摘要:
An integrated graphics pipeline system is provided for graphics processing. Such system includes a tessellation module that is positioned on a single semiconductor platform for receiving data for tessellation purposes. Tessellation refers to the process of decomposing either a complex surface such as a sphere or surface patch into simpler primitives such as triangles or quadrilaterals, or a triangle into multiple smaller triangles. Also included on the single semiconductor platform is a transform module adapted to transform the tessellated data from a first space to a second space. Coupled to the transform module is a lighting module which is positioned on the single semiconductor platform for performing lighting operations on the data received from the transform module. Also included is a rasterizer coupled to the lighting module and positioned on the single semiconductor platform for rendering the data received from the lighting module.
摘要:
A representation is provided for displacement mapping. Included are a coarse first mesh, and a fine second mesh with a topology substantially similar to a topology of the first mesh. The second mesh includes a plurality of scalar values which each represent an offset between various points on the first mesh and the second mesh.
摘要:
An integrated graphics pipeline system is provided for graphics processing. Such system includes a tessellation module that is positioned on a single semiconductor platform for receiving data for tessellation purposes. Tessellation refers to the process of decomposing either a complex surface such as a sphere or surface patch into simpler primitives such as triangles or quadrilaterals, or a triangle into multiple smaller triangles. Also included on the single semiconductor platform is a transform module adapted to transform the tessellated data from a first space to a second space. Coupled to the transform module is a lighting module which is positioned on the single semiconductor platform for performing lighting operations on the data received from the transform module. Also included is a rasterizer coupled to the lighting module and positioned on the single semiconductor platform for rendering the data received from the lighting module.
摘要:
A method and arrangement for separating interleaved luminance and chrominance color space components data in a single data stream with minimum CPU intervention is provided. In the separating circuit, the separating circuit receives as input a series of graphics/video image data composed of interleaved luminance and chrominance color space components at successive clock cycles. The separating circuit directs selected bytes of the graphics/video image data representing the luminance color space component to a first path wherein luminance component data received at two successive clock cycles are combined. Likewise, selected bytes of the graphics/video image data representing the chrominance color space component are directed to a second path wherein chrominance component data received at two successive clock cycles are combined. Then, the combined luminance and chrominance component data are output alternately. Conversely, a method and arrangement for interleaving luminance and chrominance color space components data in stored separately into a single data stream is also provided.
摘要:
Methods for forming computer models of curves, networks, or surfaces from user defined specifications of the shape to be modeled. Each specification includes a set of geometric constraints, such as positions, tangents curvatures, and torsions, and may also include discontinuity specifications. In the preferred embodiment, curves are computed so as to locally minimize a scale invariant functional of the geometry of the curve, such as a magnitude of variation in curvature of the curve (MVC) or a magnitude of curvature of the curve (MEC), while satisfying a user defined specification. An improvement on the MVC functional is to add a magnitude of variation in torsion of the curve. An improvement on the MEC functional is to add a magnitude of torsion of the curve. Networks of curves are produced using similar techniques of computing a local minimum of a functional of the geometry of the curves comprising the network, such as a magnitude of variation in curvature of the curves (MVN) or a magnitude of curvature of the curves (MEN), while satisfying a user defined specification. An improvement on these methods is to make the MVN and MEN functionals scale invariant. Another improvement is to make the MVN and MEN functionals torsion dependent. Surfaces are produced using a technique of computing a locally minimized functional of a magnitude of variation in curvature of the surface (MVS), while satisfying a set of surface constraints. An improvement on this method is to make the MVS functional scale invariant.
摘要:
A computer-implemented method of transmitting images from a transmitter to a receiver (e.g. in a teleconferencing application). A receiver maintains an image in a local storage (e.g. that from a previous frame in a sequence of frames) and the transmitter receives an updated image for a next temporal period (e.g. the next frame). The transmitter divides the updated image into blocks and comparing a rotating pixel sample(s) of each of the blocks from the updated image with a sampled pixel from a local copy of a receiver's image at a same spatial position of the pixel sample(s). The transmitter determines a difference between the rotating sampled pixel of each of the blocks from the updated image and the local copy of the receiver's image. It stores a reference to the block and associates the difference with the reference. The difference is an average absolute difference in luminance between the two blocks. The transmitter sorts each of the blocks by the difference using the reference into a list of sorted blocks and associated differences. The transmitter then transmits each of the blocks to the receiver in order of greatest difference to smallest difference until a threshold is reached. The threshold may be a difference threshold, or a maximum number of transmitted blocks, according to bandwidth constraints.
摘要:
A method and system for overriding state information programmed into a processor using an application programming interface (API) avoids introducing error conditions in the processor. An override monitor unit within the processor stores the programmed state for any setting that is overridden so that the programmed state can be restored when the error condition no longer exists. The override monitor unit overrides the programmed state by forcing the setting to a legal value that does not cause an error condition. The processor is able to continue operating without notifying a device driver that an error condition has occurred since the error condition is avoided.
摘要:
Vertices defining a graphics primitive are converted into homogeneous space and clipped against a single clipping plane, the w=0 plane, to produce a clipped graphics primitive having vertices including w coordinates that are greater than or equal to zero. Rasterizing a graphics primitive having a vertex with a w coordinates that is greater than or equal to zero is less complex than rasterizing a graphics primitive having a vertex with a w coordinate that is less than zero. Clipping against the w=0 plane is less complex than conventional clipping since conventional clipping may require that the graphics primitive be clipped against each of the six faces of the viewing frustum to produce a clipped graphics primitive.
摘要:
Method and apparatus for shaping a shared edge between two or more N-patches is described. More particularly, vertices and normals of a polygon, tristip, quadstrip and so on, are obtained. Shared vertices corresponding to the shared edge are identified. When normal vectors at a shared vertex are determined to differ, tangents of the normal vectors are computed. These tangents may be used to optionally shape the shared edge, along with control points.
摘要:
A system, method and computer program product are provided for improving image quality in a graphics pipeline. Initially, a difference is detected between a first pixel of a first frame to be outputted and a corresponding second pixel of a second frame outputted before the first frame. Such difference may be representative of motion which is capable of reducing image quality. A pixel output is then modified if such a difference is detected. This is accomplished utilizing texturing hardware in the graphics pipeline. Thereafter, the pixel output is outputted via a progressive or interlaced display system.