Abstract:
An exemplary embodiment of the present invention provides a stylus pen including: a body; a conductive tip configured to be exposed from an inside of the body to an outside thereof; and a resonance circuit connected to the conductive tip to resonate an electrical signal transferred from the conductive tip. An inductor unit of the resonance circuit includes a ferrite core and a coil wound in multiple layers over at least a portion of the ferrite core. The ferrite core includes nickel, and the coil can be formed by a litz wire with adjacent winding layers that are wound to be inclined in a zigzag form.
Abstract:
A smartphone may include a first cover layer and an LCD panel located under the first cover layer. The smartphone may include a backlight unit which may be located under the LCD panel. The smartphone may include a touch sensor which may sense touch in a capacitive manner. The backlight unit may include a pressure sensor and a spacer layer. The pressure sensor may include one or more electrodes formed in a single layer attached on the second cover layer and spaced apart from the reflective sheet. A driving signal may be applied to the touch sensor. A touch position may be detected by a sensing signal which may be output from the touch sensor. A magnitude of a touch pressure may be detected based on a change amount of capacitance which may be output from the pressure sensor.
Abstract:
A touch input device capable of detecting a pressure of a touch on a touch surface may be provided that includes a substrate and a display module. The touch input device further includes an electrode which is disposed at a position where a distance between the electrode and a reference potential layer is changed by the touch on the touch surface. The distance may be changed depending on a magnitude of a pressure of the touch. The electrode outputs an electrical signal according to the change of the distance. A spacer layer is disposed between the reference potential layer and the electrode.
Abstract:
In one embodiment, the invention can be a touch input device capable of unlocking a passcode accordance with a touch pressure. The device can include a touch screen which displays a passcode input window; a controller which generates a first control signal as to whether or not a touch on the passcode input window matches a predetermined passcode; and a memory which stores the predetermined passcode. The passcode input window can include a plurality of nodes which are disposed in different positions. The number of touched nodes among the plurality of nodes, the order of the touched nodes among the plurality of nodes, and a pressure level of the touch on each of the touched nodes among the plurality of nodes can be set as the predetermined passcode. Further, the pressure level of the touch can be classified into at least two levels.
Abstract:
An antenna apparatus may be provided that includes: a radiating metal; a ground which is connected to the radiating metal; a first impedance which forms a first path by being connected between the radiating metal and the ground, has an impedance value which is changed depending on a frequency, and opens the first path in response to a predetermined frequency, and a second impedance which forms a second path parallel with the first path by being connected between the radiating metal and the ground, has an impedance value which is changed depending on a frequency, and short-circuits the second path in response to the predetermined frequency.
Abstract:
In one embodiment, a touch input device includes a first electrode; a second electrode located on one side of the first electrode; a display disposed on one side of the first electrode opposite to the second electrode; and a spacer layer between the first electrode and the second electrode. One of the first electrode and the second electrode is a drive electrode, and the other is a receiving electrode that receives the drive signal by a mutual capacitance between the first electrode and the second electrode. When an external pressure is applied to the first electrode through the display, the first electrode is concavely bent toward the second electrode. The mutual capacitance between the electrodes changes according to a distance between the electrodes. The magnitude of the external pressure according to the change of the capacitance between the electrodes is detected.
Abstract:
In one embodiment, a touch input device capable of detecting a pressure of a touch on a touch surface includes a display panel and an electrode disposed under the display panel. An electrical characteristic detected at the electrode is changed by the bending of the display panel. A magnitude of the pressure applied to the touch surface is detected according to the change amount of the electrical characteristic. The display panel includes a first area and a second area. A pressure detection sensitivity of the first area is higher than a pressure detection sensitivity of the second area. When the first area and the second are bent to the same degree, a change amount of the electrical characteristic detected when a pressure is applied to the second area is greater than a change amount of the electrical characteristic detected when a pressure is applied to the second area.
Abstract:
Disclosed is a tunable capacitor. The tunable capacitor according to a first embodiment of the present invention includes: a variable capacitor unit placed between a first terminal and a second terminal; and a bypass switch which on/off controls a bypass connection between the first terminal and the second terminal, wherein the variable capacitor unit and the bypass switch are integrated on one semiconductor die or on one module. The tunable capacitor according to a second embodiment of the present invention includes: a variable capacitor unit placed between a first terminal and a second terminal; an impedance tuner placed between aground terminal and either the first terminal or the second terminal; and a tuning switch which on/off controls the connection between the variable capacitor unit and an impedance tuner, wherein the variable capacitor unit, the impedance tuner and the tuning switch are integrated on one semiconductor die or on one module.
Abstract:
A touch input device detecting a touch position and a touch pressure may be provided. The touch input device includes a display module which includes a first layer made of glass or plastic and a second layer which is disposed under the first layer and is made of glass or plastic; a plurality of touch electrodes which are formed within the display module and are for detecting the touch position and the touch pressure; and a reference electrode which is disposed apart from the touch electrode.
Abstract:
A smartphone may be provided that includes: a cover layer; an LCD panel; a backlight unit which is located under the LCD panel; a pressure electrode which is located under the backlight unit; a shielding member which is located under the pressure electrode; and a converter which converts a signal comprising information for a capacitance change amount outputted from the pressure electrode to a digital signal. A magnitude of a touch pressure is detected from the digital signal.