Abstract:
A pixel structure of a liquid crystal display panel includes a scan line, a data line, a thin film transistor (TFT), a pixel electrode, a light-shielding pattern, and a common line. The data line includes a first data line section and a second data line section composed respectively of the first material layer and second material layer and electrically connected to each other through a plurality of contact plugs. In addition, the pixel electrode is electrically connected to a drain of the TFT, and the light-shielding pattern, which is a floating metal, is disposed over the first data line section. The common line, the light-shielding pattern, and the second data line section are composed of the same material layer.
Abstract:
A sealant region pattern for a liquid crystal display apparatus and a method for fabricating the same. The method comprises providing a first substrate and a second substrate opposite thereto, forming a predetermined material layer on the first substrate, forming an organic material pattern layer having openings of a saw tooth pattern on the predetermined material layer to expose the surface of the predetermined material layer underneath, The surface of the predetermined material layer and the sidewall of the organic material pattern layer form a predetermined angle.
Abstract:
A sealant region pattern for a liquid crystal display apparatus and a method for fabricating the same. The method comprises providing a first substrate and a second substrate opposite thereto, forming a predetermined material layer on the first substrate, forming an organic material pattern layer having openings of a saw tooth pattern on the predetermined material layer to expose the surface of the predetermined material layer underneath, The surface of the predetermined material layer and the sidewall of the organic material pattern layer form a predetermined angle.
Abstract:
A panel is disclosed, in which, a patterned semiconductor layer is formed on an insulation layer. The patterned semiconductor layer includes a portion corresponding to an electrode and another portion corresponding to a wiring trace. The portion corresponding to the electrode may be formed as, for example, a channel, and the other portion corresponding to the wiring trace may protect the wiring trace during fabrication process or in the structure from scratching or corrosion.
Abstract:
A driving circuit and a common electrode are located within a sealant region of the first substrate, wherein the driving circuit includes switch devices and turn-line structures. The common electrode is located within the sealant region of the first substrate. The planar layer is located on the first substrate, wherein the thickness of the planar layer at the turn-line structure of the driving circuit is less than the thicknesses of other portions. The conductive layer is located on the planar layer. A second substrate having an electrode thereon is disposed opposite to the first substrate. A liquid crystal layer is located within the display region between the first substrate and the second substrate. A sealant is located within the sealant region between the first substrate and the second substrate, and conductive balls are distributed in the sealant.
Abstract:
A pixel array includes a substrate, scan lines, data lines, active devices, first pads, second pads, first wires, second wires, an insulating layer, an organic planarization layer, first pad electrodes, second pad electrodes and pixel electrodes. The substrate has a display area and a non-display area. The scan lines and the data lines are disposed in the display area. The active devices are disposed in the display area and electrically connected to the scan lines and the data lines. The first and second pads are disposed in the non-display area. The first and second wires are disposed in the non-display area and respectively connected to the first and second pads. The organic planarization layer covers the insulating layer. The first and second pad electrodes are disposed on the organic planarization layer in the non-display area. The pixel electrodes are disposed on the organic planarization layer in the display area.
Abstract:
A thin film transistor (TFT) array substrate with few processing steps and simple structure is provided, wherein merely two patterned metal layers are required and a patterned planarization layer is adopted to separate the two patterned metal layers from each other and thereby reduce power loading. In addition, the patterned planarization layer has slots to form height differences so as to separate scan lines from common electrodes to further reduce the power loading.
Abstract:
A pixel structure includes a first and a second scan lines, a data line, a first insulating layer covering the first and the second scan lines and a portion of the data line and having a recess, a second insulating layer covering the first insulating layer, a capacitor electrode line covering the data line and the recess, a third insulating layer on the capacitor electrode line, a first active device electrically connected to the second scan line and the data line, a second active device electrically connected to the first active device and the first scan line, and a first and a second pixel electrodes electrically connected to the first and the second active devices, respectively. The portion of the data line and the first and the second scan lines are in the same layer. The recess is located at two sides of the portion of the data line.
Abstract:
A driving circuit and a common electrode are located within a sealant region of the first substrate, wherein the driving circuit includes switch devices and turn-line structures. The common electrode is located within the sealant region of the first substrate. The planar layer is located on the first substrate, wherein the thickness of the planar layer at the turn-line structure of the driving circuit is less than the thicknesses of other portions. The conductive layer is located on the planar layer. A second substrate having an electrode thereon is disposed opposite to the first substrate. A liquid crystal layer is located within the display region between the first substrate and the second substrate. A sealant is located within the sealant region between the first substrate and the second substrate, and conductive balls are distributed in the sealant.
Abstract:
A pixel structure includes a first and a second scan lines, a data line, a first insulating layer covering the first and the second scan lines and a portion of the data line and having a recess, a second insulating layer covering the first insulating layer, a capacitor electrode line covering the data line and the recess, a third insulating layer on the capacitor electrode line, a first active device electrically connected to the second scan line and the data line, a second active device electrically connected to the first active device and the first scan line, and a first and a second pixel electrodes electrically connected to the first and the second active devices, respectively. The portion of the data line and the first and the second scan lines are in the same layer. The recess is located at two sides of the portion of the data line.