Abstract:
Computing readable media, apparatuses, and methods for signaling UL frame duration in wireless local-area networks. An apparatus of a wireless device is disclosed. The apparatus comprising processing circuitry, the processing circuitry configured to: encode a trigger frame for an uplink (UL) multi-user (MU) communication, the trigger frame including a media access control (MAC) portion including one or more station identifications and a length field to indicate an UL physical layer convergence procedure (PLCP) protocol data unit (PPDU) (UL-PPDU) length, the MAC portion further including a duration field to indicate a time period for other stations to set network allocation vectors. The processing circuitry further configured to: configure the access point to transmit the trigger frame, and decode UL-PPDUs from one or more stations identified by the one or more stations identifications, where a length of each of the UL-PPDUs is to be in accordance with the UL-PPDU length.
Abstract:
Computing readable media, apparatuses, and methods for signaling UL frame duration in wireless local-area networks. An apparatus of a wireless device is disclosed. The apparatus comprising processing circuitry, the processing circuitry configured to: encode a trigger frame for an uplink (UL) multi-user (MU) communication, the trigger frame including a media access control (MAC) portion including one or more station identifications and a length field to indicate an UL physical layer convergence procedure (PLCP) protocol data unit (PPDU) (UL-PPDU) length, the MAC portion further including a duration field to indicate a time period for other stations to set network allocation vectors. The processing circuitry further configured to: configure the access point to transmit the trigger frame, and decode UL-PPDUs from one or more stations identified by the one or more stations identifications, where a length of each of the UL-PPDUs is to be in accordance with the UL-PPDU length.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of estimating a location of a mobile device. For example, a location estimation entity (LE) may be configured to receive from a server location-based location-enabling source (LES) information identifying one or more location-enabling sources based on a location area of a mobile device, and to communicate with the one or more identified location-enabling sources information for estimating the location of the mobile device.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to generate a management frame identifying an operation mode for a basic service set of a local area network. An example disclosed method includes performing an assessment of a wireless network and determining an operation mode for a basic service set (BSS) bandwidth based on the assessment, the operation mode indicating continuity of a primary segment, a secondary segment, a tertiary segment and a quaternary segment. The example method further includes creating a management frame including information fields based on the BSS bandwidth, the information fields including a first channel width field, a second channel width field, a third channel width field, a first center frequency field, a second center frequency field and a third center frequency field and transmitting the management frame over the wireless network.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to generate a management frame identifying an operation mode for a basic service set of a local area network. An example disclosed method includes performing an assessment of a wireless network and determining an operation mode for a basic service set (BSS) bandwidth based on the assessment, the operation mode indicating continuity of a primary segment, a secondary segment, a tertiary segment and a quaternary segment. The example method further includes creating a management frame including information fields based on the BSS bandwidth, the information fields including a first channel width field, a second channel width field, a third channel width field, a first center frequency field, a second center frequency field and a third center frequency field and transmitting the management frame over the wireless network.
Abstract:
Simultaneous dual band operation (2.4 and 5 GHz) is common in APs on the market today, and tri-band devices are expected in the market soon. Link aggregation can also be applicable to multiple air interfaces in the same band (for instance 2 independent IEEE 802.1 lac/ax air interfaces at 5 GHz on 2 different 80 MHz channels). One exemplary aspect provides technology that enables significantly higher throughput and/or higher reliability for two stations (STAs) or a STA and the access point (AP) when the devices support simultaneous multi-band operation.
Abstract:
Disclosed are methods, devices, and computer readable storage mediums for encoding and decoding messages for fast link adaptation. In one aspect, a method of a high efficiency (HE) station (STA) (HE STA) includes encoding an aggregated control subfield of a high throughput (HT) Control field to signal one or more of: a request to use dual carrier modulation (DCM), a request to use a particular resource unit, an uplink (UL) power headroom indication, and an indication that the HE STA is using a minimum transmit power for a current modulation and coding scheme (MCS). The method also includes configuring the HE STA to transmit a HE-PPDU including the HT control field.
Abstract:
Embodiments of a station (STA) and method of communication are generally described herein. The STA may be included in a first plurality of STAs affiliated with a first multi-link logical entity (MLLE). A plurality of links may be established between the first MLLE and a second MLLE, wherein the second MLLE may be affiliated with a second plurality of STAs. The STA may receive a first subset of a sequence of MAC protocol data units (MPDUs). A second subset of the sequence of MPDUs may be transmitted by another STA of the first plurality of STAs. The STA may transmit a block acknowledgement (BA) frame that includes: a number of BA bitmaps, configurable to values greater than or equal to one; and BA control information for each of the BA bitmaps.
Abstract:
This disclosure relates to a serving entities control entity for controlling a communication network comprised of a plurality of communication clients which are connectable via a plurality of serving entities, the serving entities control entity comprising: a traffic monitor, configured to monitor data traffic of at least one transmission queue of each serving entity of the plurality of serving entities; and a serving entities controller, configured to allocate resources to each serving entity of the plurality of serving entities based on the monitored data traffic and according to quality of service requirements of each of the communication clients.
Abstract:
A wireless station (STA) for operation in a wireless network communicates over a first band and a second band, where operation of the first band includes operation of a first set of band-specific medium access control processing and physical-layer circuitry of the STA, and wherein operation of the second band includes operation of a second set of band-specific medium access control processing and physical-layer circuitry of the STA. The STA implements a power-save policy for the STA to coordinate power-save operations between the first band and the second band, where the power-save policy calls for a change in operational parameters of at least the second band. The STA generates a power-save request message for transmission to a remote device over the first band wherein a power-save request message indicates the change in operational parameters for the second band according to the power-save policy.