Abstract:
Embodiments of a station (STA) and method of communication are generally described herein. The STA may be included in a first plurality of STAs affiliated with a first multi-link logical entity (MLLE). A plurality of links may be established between the first MLLE and a second MLLE, wherein the second MLLE may be affiliated with a second plurality of STAs. The STA may receive a first subset of a sequence of MAC protocol data units (MPDUs). A second subset of the sequence of MPDUs may be transmitted by another STA of the first plurality of STAs. The STA may transmit a block acknowledgement (BA) frame that includes: a number of BA bitmaps, configurable to values greater than or equal to one; and BA control information for each of the BA bitmaps.
Abstract:
Methods and apparatus to handle enhanced distributed channel access parameters are disclosed. An example apparatus includes a frame generator to generate a data frame instructing a station to operate using a multi-user enhanced distributed channel access (MU EDCA); a communication scheduler to instruct radio architecture to transmit the data frame to the station; the frame generator to generate a buffer status request requesting a buffer status of the station; and the communication scheduler to: instruct radio architecture to transmit the buffer status request to the station; and when a response to the buffer status request corresponds to a non-null queue, scheduling the station to operate using EDCA.
Abstract:
Wireless devices and methods presented in the disclosure provide for block acknowledgements for multi-band transmissions. The block acknowledgements can be coupled (aggregated) for two or more flows across multiple bands by using an acknowledge aggregation methodology. The method creates a single multi-band common acknowledgment that can be sent over one band to acknowledge transmissions over two or more bands.
Abstract:
Densely populated wireless local area networks (WLANs) can encounter issues with processing multiple user (MU) uplink (UL) transmissions sent from many stations (STAs) simultaneously. The access points (AP) or master stations in these densely populated WLANs must manage the UL MU transmissions. To accomplish the management of the UL MU transmissions, a system for dynamically setting UL MU parameters is provided that can modify or set one or more parameters that govern how each STA is to transmit data to the AP. The parameters may be sent to one or more of the STAs in one or more transmissions and may direct how the STAs are to transmit data for at least some portion of time.
Abstract:
This disclosure relates to a method for primary channel selection by a first access point type communication device (AP) of a group of APs, the method comprising: detecting, by the first AP, a central frequency location and a bandwidth of a primary channel selected by at least one second AP of the group of APs; selecting, by the first AP, a central frequency location and a bandwidth of a primary channel for the first AP, wherein the selection of the central frequency location and bandwidth of the primary channel for the first AP is based on the detected central frequency location and bandwidth of the primary channel for the at least one second AP.
Abstract:
A method and system for time synchronization in a mobile device are disclosed. The method includes negotiating a synchronization schedule. The synchronization schedule defines a plurality of synchronization times for receiving synchronization messages. The method further includes transitioning the mobile device from a first state to a second state to receive a synchronization message. The mobile device uses less power in the first state than the second state and the mobile device cannot receive the synchronization message when in the first state. The method further includes synchronizing a clock component in response to receiving the synchronization message.
Abstract:
Methods, systems, and computer-readable media are provided for offloading services and functionalities from a main host central processing unit (CPU) of a computing device to a dedicated power-efficient offload engine, thereby enabling a longer battery life for the device and an enhanced set of features.
Abstract:
A system and method for the distribution of time signals is available for devices with multiple communication cores. An embodiment may or may not use a centralized manager for the management of time preservation. When a communication core in a multiple communication core device requires timing information, it may request the time information from another communication core or from the centralized manager. The centralized manager, if present, can obtain time information from an external source or from one of the communication cores. The result can be reduced power consumption at a lower cost.
Abstract:
Simultaneous dual band operation (2.4 and 5 GHz) is common in APs on the market today, and tri-band devices are expected in the market soon. Link aggregation can also be applicable to multiple air interfaces in the same band (for instance 2 independent IEEE 802.1 lac/ax air interfaces at 5 GHz on 2 different 80 MHz channels). One exemplary aspect provides technology that enables significantly higher throughput and/or higher reliability for two stations (STAs) or a STA and the access point (AP) when the devices support simultaneous multi-band operation.
Abstract:
Methods, computer readable media, and apparatus for determining a receive (Rx) number of spatial streams (NSS) for different bandwidths (BWs) and modulation and control schemes (MCSs) are disclosed. An apparatus is disclosed comprising processing circuitry configured to decode a supported HE-MCS and a NSS set field, the supported HE-MSC and NSS set field received from an high-efficiency (HE) station. The processing circuitry may be further configured to determine a first maximum value of N receive (Rx) SS for a MCS and a bandwidth (BW), where the first maximum value of N Rx SS is equal to a largest number of Rx SS that supports the MCS for the BW as indicated by the supported HE-MCS and NSS set field; and, determine additional maximum values based on an operating mode (OM) notification frame, and a value of an OM control (OMC) field. Signaling for BW in 6 GHz is disclosed.