Abstract:
The invention relates to a vessel including a drilling installation for drilling a well, which installation comprises: —a drill floor surrounding a firing line; —a first drilling tower arranged on a deck of the vessel, comprising a frame with two elongated hollow casings, which extend parallel to a longitudinal axis of the frame, are rigidly connected to each other by connection elements, wherein the frame is positioned at a side of the drill floor, such that the longitudinal axis of the frame extends parallel to the firing line, and such that the longitudinal axis and the firing line are substantially aligned with each other in a width direction of the frame; —an additional tower support arranged between the deck of the vessel and an elevated position at the first drilling tower; —two storage devices for vertically storing drilling tubulars; —two pipe rackers, each pipe racker being associated with one of the two storage devices, and each pipe racker being configured to move drilling tubulars between the associated storage device and the firing line, wherein the two storage devices are positioned at opposite sides of the drill floor, such that the storage devices and the drill floor are aligned with each other in a thickness direction of the frame, and wherein the casings of the frame of the first drilling tower each support one of the two pipe rackers.
Abstract:
The present invention relates to an offshore vessel capable of installing and removing a subsea well control device and a riser string, the vessel comprising a hoisting device comprising a travelling block for connecting a load, which travelling block is displaceable along a firing line which extends through a moonpool and a heave compensation system. The vessel further comprises a working deck supported by the hull of the vessel which covers at least a portion of the moonpool to allow the assembly of a riser string, wherein said working deck is provided with a riser string suspension device that allows to suspend a top end of a string of risers. According to the invention, a heave compensation connection system is provided, which is adapted to connect the working deck to the travelling block, such that the hoisting device can move the working deck when the working deck is connected to the travelling block between a lowered riser assembly position allowing the assembly of a riser string, and in which the working deck is supported by the hull, and a raised heave compensated position, in which the working deck is connected to the travelling block, and wherein the working deck is heave compensated.
Abstract:
An offshore system with a rig and a cantilever having a rigid cantilever structure with an operational end. The rig is provided with a first support rail which extends along a side of the deck supporting structure. Travelling and swivelling assemblies are arranged between the first support rail and the cantilever beams. The rig is provided with one or more second support rails that extend over the deck in a direction transverse to the first support rail. The system has a cantilever inner end carrier device travels over and engages on said one or more second support rails. This device is connected via a vertical pivot axis swivel to a connector part of the rigid cantilever structure at or near its inner end to provide a rotation axis at a fixed location relative to the structure for the rotational motion of the cantilever, the cantilever inner end carrier device holding the cantilever inner end relative to the deck.
Abstract:
A crane vessel for hoisting of an offshore wind turbine or a component thereof, includes a hull having a deck. A crane configured for hoisting of an offshore wind turbine or a component thereof includes a vertical crane structure having a crane structure base fixed to the hull, the crane structure extending from the hull over a height thereof to a top along a vertical axis of the crane structure, a boom, and a slew bearing allowing to revolve the boom, about a slew axis. A main hoisting system includes at least one main hoisting winch, an associated main hoisting cable and a load connector, the main hoisting cable extending from the main hoisting winch to a main hoist cable guide on the boom and then to the load connector. The crane further includes a dynamic behaviour adjustment system that is configured to adjust the dynamic behaviour of the vessel by moving and/or arranging an adjustment mass that is distinct from the offshore wind turbine or component thereof into or in at least one dynamic behaviour adjustment position along the height of the vertical crane structure.
Abstract:
A top drive system for wellbore related activities involving a drilling tubulars string. The system includes a frame structure and a top drive device with one or more top drive motors, a transmission housing, a floating quill system with a hollow vertical floating quill shaft. The top drive device has a thrust bearing housing arranged below the transmission housing and suspended via said first and second vertical frame members from the top frame member. A hollow vertical outer main shaft is suspended from the thrust bearing housing and a hollow vertical inner main shaft is arranged vertically mobile within the outer main shaft. The inner main shaft is connected to the floating quill shaft and has a lower connector end that is configured to be connected to a drilling tubulars string via a threaded connection, so as to allow for transmission of the rotary torque from the one or more top drive motors via the transmission, the floating quill shaft, the inner main shaft, to the threadedly connected drilling tubular string.
Abstract:
A vessel and method to perform subsea wellbore related operations, e.g. slim hole technique drilling of a subsea wellbore are disclosed. The vessel has a hull with at least one moonpool defining first and second moonpool areas. A vertical tower is mounted on a tower supporting hull structure and has a vertical operative face. A hoisting device has a winch and winch driven cable, and is adapted to suspend a load from said vertical tower via said at least one winch driven cable and to manipulate the suspended load in a firing line of the tower that extends along and outside of said vertical operative face of the tower. The tower is slewable about a vertical slew axis by means of a slewing drive at least into first and second operative positions wherein the firing line extends through the first and second moonpool areas respectively.
Abstract:
An offshore drilling vessel includes a floating hull subjected to heave motion. The hull includes a moonpool and a drilling tower near the moonpool. A drilling tubulars storage rack is provided for storage of drilling tubulars. The vessel includes a heave motion compensation support that is adapted to support a slip device whilst performing heave compensation motion relative to the heaving motion of the vessel. A racking device is provided with a heave motion synchronization system that is adapted to bring a tubular retrieved from the storage rack in heave motion into a vertical motion that is synchronous with the heave compensation motion of the string slip device. The racking device includes vertical rails and at least two separate motion arm assemblies mounted on said vertical rails. Each separate motion arm assembly includes its own vertical drive which is electrically connected to the heave motion synchronization system.
Abstract:
An offshore drilling vessel including a hull having a moonpool, a bow and a stern, an accommodation topside having crew quarters and a bridge, said accommodation topside being arranged on the hull at the bow, a main deck between the accommodation topside and the stern of the vessel, wherein a front main deck portion of the main deck extends forward of the moonpool and a rear main deck portion of the main deck extends rearward of the moonpool, a firing line hoist system mounted on the hull at said moonpool, including a drilling structure, a hoisting device supported by the drilling structure and having a load attachment device displaceable along a firing line, the hoisting device including one or more cables and one or more associated winches to manipulate the position of the load attachment device relative to the drilling structure, one or more pivotal burner booms, each burner boom having an inner portion pivotally mounted at a lateral side of the hull and an outer portion supporting a burner, the burner boom being pivotable between a storage position generally parallel to the side of the hull and an operative position wherein the boom is directed away from the hull, the burner boom in the storage position being lower than the level of the main deck.
Abstract:
The present invention relates to a marine drilling riser joint, adapted for the securement of one or more umbilicals (36) thereto. The marine drilling riser joint comprises one or more umbilical gutter assemblies (8), connected to or formed integral in an outer surface of a buoyancy module on the exterior of the marine drilling riser joint and provided parallel to the riser pipe, the umbilical gutter assembly comprising: an umbilical gutter (8) adapted to accommodate one or more umbilicals; and a resilient gutter cover (82a, 82b), which is elastically deformable by a loom tool, which resilient gutter cover in a closed position covers the umbilical gutter and in an elastically deformed position provides a working clearance to allow the one or more umbilicals to be introduced into the umbilical gutter.
Abstract:
Wellbore drilling system comprising: a drilling tower, a drill floor having a well center through which a drill string passes along a firing line, a drilling tubulars storage rack adapted to store multiple drilling tubulars in vertical orientation, a tubular racking device having at least a lower first tubular racker assembly and at least a second tubular racker assembly operable at a greater height than the first tubular racker assembly, each tubular racker assembly comprises a base, a motion arm connected to said base, and a tubular gripper member connected or connectable to the motion arm and adapted to grip a tubular, wherein—with the tubular gripping member connected to the motion arm of the racker assemblies—the tubular racking device is adapted to grip and retain a drilling tubular by the tubular racker assemblies, and wherein the tubular racking device is adapted to place a tubular in and remove a tubular from the drilling tubulars storage rack, and wherein the tubular racking device has a reach at least allowing to transfer a tubular gripped by said first and second tubular racker assemblies between the drilling tubulars storage rack and a position of the tubular aligned with the firing line above the well center so as to allow for building and disassembly of a tubulars string, wherein the system further comprises one or more well center tools, each adapted for operation above the well center of the drill floor, wherein the motion arm of the lower first tubular racker assembly is provided with a connector, and the at least one well center tool is provided with a complementary connector, and wherein—with the at least one well center tool connected to the motion arm of the lower tubular racker assembly—the well center tool is operable above the drill floor.