Abstract:
This disclosure describes systems, methods, and devices related to channel estimation for coordinated access point (AP) transmissions. A device may identify of one or more access points associated with a coordinated basic service set. The device may determine to transmit one or more packets to a station device in coordination with the one or more access points. The device may determine one or more first training fields associated with one or more antennas of the device. The device may cause to send the one or more first training fields to the station device on one or more first communication links between the device and the station device.
Abstract:
A technology that is operable to schedule data transfer for a multiple user multiple-input and multiple-output (MU-MIMO) communications network is disclosed. In one embodiment, an enhanced node B (eNode B) is configured with circuitry configured to receive a sounding signal from each of a plurality of user equipment (UEs). One or more major paths of the sounding signals from each of the plurality of UEs are determined. An angle of arrival (AoA) is determined that is associated with each of the one or more major paths. The plurality of UEs are grouped into one or more candidate MU-MIMO sets using the AoAs associated with each of the one or more major paths. Data transmissions are scheduled for one or more of the candidate UEs of the candidate MU-MIMO set on one or more of the major paths of each of the candidate UEs.
Abstract:
A method for self-interference cancellation in a wireless communication device. The wireless communication device has an estimator, a transmitter and a cancellation device. The estimator is configured to estimate a known signal received from a second wireless communication device when the second wireless communication device is utilized less than a predetermined threshold. The transmitter is configured to transmit within a coherence time of the estimated known signal, a predetermined signal. The cancellation device is configured to cancel the estimated known signal from a received signal.
Abstract:
A technology that is operable to schedule data transfer for a multiple user multiple-input and multiple-output (MU-MIMO) communications network is disclosed. In one embodiment, an enhanced node B (eNode B) is configured with circuitry configured to receive a sounding signal from each of a plurality of user equipment (UEs). One or more major paths of the sounding signals from each of the plurality of UEs are determined. An angle of arrival (AoA) is determined that is associated with each of the one or more major paths. The plurality of UEs are grouped into one or more candidate MU-MIMO sets using the AoAs associated with each of the one or more major paths. Data transmissions are scheduled for one or more of the candidate UEs of the candidate MU-MIMO set on one or more of the major paths of each of the candidate UEs.