Abstract:
Resonator control techniques for wireless power transmitting units are described. One or more novel parameters may be defined for use in conjunction with dominant PRU selection on the part of a PTU. In various embodiments, each of a plurality of PRUs may determine values for one or more such parameters, and may report those values to the PTU. In some embodiments, the PTU may identify a parameter to be used as a selection criterion, and may identify the dominant PRU based on the respective values reported for that parameter by the plurality of PRUs. Other embodiments are described and claimed.
Abstract:
Wireless link management techniques for wireless charging systems are described. According to some such techniques, a power receiving unit (PRU) may be configured to observe a rectifier voltage while operating in a charge complete connected (CCC) mode according to which it possesses a wireless connection with a power transmitting unit (PTU) operating in a power save state. In various embodiments, the PRU may be configured to observe the rectifier voltage in an attempt to detect power beacons generated by the PTU. In some embodiments, the PRU may be configured to maintain the wireless connection if it detects power beacons, and to terminate the wireless connection if it does not detect any beacons. Other embodiments are described and claimed.
Abstract:
Methods and apparatus for load balancing and scheduling in wireless power transfer networks are disclosed. An example method includes receiving data related to a power receiving unit (PRU) from a first power transmitting unit (PTU), identifying a second PTU based on the data, and transmitting an alert corresponding to the second PTU to at least one of the first PRU, the first PTU, the second PTU, or a display.
Abstract:
Methods and apparatus for cross connection detection and mitigation in wireless power transfer networks are disclosed. An example method includes receiving communication data from the second PTU, the communication data being generated by the PRU, wherein the first PTU and the second PTU are capable of providing wireless power to power receiving units; determining that the communication data is intended for the first PTU based on the connected device mapping; and transmitting the communication data to the first PTU.
Abstract:
Examples are disclosed for beamforming to mitigate multi-user leakage and interference. The examples include an evolved node B (eNB) receiving feedback from user equipment (UEs) to indicate strongest or highest channel gains for various beams included in a plurality of beam sets. A selection process or scheme may then be implemented to select individual beams for a UE that minimizes or reduces leakage caused by the UE's use of a given beam. Reducing leakage may reduce interference to other UEs using other beams. Other examples are described and claimed.
Abstract:
This disclosure describes systems, methods, and apparatus related to dominant power receiving unit selection. A device may determine a presence of a first device of one or more devices on a charging area of the device, the charging area including a power transmitting surface. The device may establish a connection with the first device using one or more communication protocols. The device may identify one or more parameters associated with the first device using the established connection. The device may determine that the first device is a dominant device based at least in part on the one or more parameters.
Abstract:
Wireless link management techniques for wireless charging systems are described. According to some such techniques, a power receiving unit (PRU) may be configured to observe a rectifier voltage while operating in a charge complete connected (CCC) mode according to which it possesses a wireless connection with a power transmitting unit (PTU) operating in a power save state. In various embodiments, the PRU may be configured to observe the rectifier voltage in an attempt to detect power beacons generated by the PTU. In some embodiments, the PRU may be configured to maintain the wireless connection if it detects power beacons, and to terminate the wireless connection if it does not detect any beacons. Other embodiments are described and claimed.
Abstract:
Disclosed in some examples are methods, systems, devices, and machine readable mediums which reduce the amount of bandwidth consumed by the reference signals. In some examples, this is achieved by finding the optimal subspace containing all the active UEs in the cell and transmitting reference signals to that subspace. In some examples, second order statistics may be utilized to calculate a projected channel to the optimal subspace at the UE and then feeding this back to the eNodeB. The projected channel to optimal subspace may be utilized at the UE and the eNodeB to transform the codebook and align the codewords with the channel direction.
Abstract:
A simultaneous transmit and receive (STR) technology is described. The eNB is configured with a downlink centric measurement threshold and an uplink centric measurement threshold which increase overall capacity in the wireless cellular network. A signal measurement command is transmitted from the eNB to the UE instructing the UE to take a signal quality measurement. The signal quality measurement is received from the UE at the eNB. It is determined whether the signal quality measurement is greater than the downlink centric measurement threshold and whether the signal quality measurement is greater than the uplink centric measurement threshold. The downlink centric measurement threshold, the uplink centric measurement threshold, and the DL/UL ratio are configured to increase capacity in the wireless cellular network through selective use of STR.
Abstract:
Systems and methods provide channel state information feedback in a multiple-input multiple-output (MIMO) system. A method quantizes a pre-coding matrix indicator (PMI) and feeds it back from a user equipment (UE) to an evolved Node B (eNodeB). The method may use codebooks for vector quantization of optimal horizontal direction and a scalar quantizer to quantize an optimal vertical direction from the eNodeB to a selected UE.