Abstract:
A wireless digital communication system includes a base station in communication with a plurality of user equipment mobile terminals (UEs). The system prioritizes the forwarding of blocks of downlink data to designated ones of the UEs. The system employs adaptive modulation and coding (AM&C) to achieve improved radio resource utilization and provides optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink (DL) channel quality measurements only from those mobile terminals (UEs) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs.
Abstract:
Data transmission is optimized in a wireless digital communication system including a base station and a plurality of user equipment mobile terminals (UEs). Adaptive modulation and coding (AM&C) is employed to achieve improved radio resource utilization and provide optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink DL channel quality measurements only from those UEs with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs.
Abstract:
A transmission power level for a user equipment in a wireless time division duplex communication system using code division multiple access is determined. An interference level is measured. A pathloss estimate is determined. A long term average of pathloss estimates is determined. A first weighting factor, null, is determined by the determined pathloss estimate, producing a weighted pathloss estimate. (1nullnull) is multiplied to the determined long term average of pathloss estimates, producing a weighted long term pathloss estimate. A transmission power level of the user equipment is determined by adding the weighted pathloss estimate to the weighted long term pathloss estimate to the measured interference level to a target signal to interference ratio to a constant value.
Abstract:
At least one desired communication signal is received by a receiver. The at least one desired communication signal is transmitted in a wireless format of a cell. A plurality of communication signals are received. Communication signals are selected from the plurality. The selected communication signals include each desired communication signal and at least one communication signal originating from another cell. A channel estimate is produced for each selected communication signal. Data is jointly detected for the selected communication signals.
Abstract:
A plurality of communication bursts are transmitted substantially simultaneously in a time slot of a time division duplex/code division multiple access communication system. The communication system has a maximum number of K midamble shifts. Each burst has an assigned midamble. Each midamble is a shifted version of a basic midamble code having a period of P. A combined signal is received. The combined signal includes a received version of each of the communication burst's midambles. A P by P square circulant matrix is constructed including the K midamble shifts. A channel response is determined for each of the K midamble shifts using a prime factor algorithm (PFA) discrete Fourier transform (DFT) algorithm, the received combined signal and the P by P square circulant matrix. The PFA DFT algorithm has a plurality of stages. Each stage has P inputs.
Abstract:
Data of a transport block set is to be transmitted in a wireless communication system. The wireless communication system uses adaptive modulation and coding and has a physical layer hybrid automatic repeat request mechanism. Segmentation information for potential segmentation of the transport block set is provided. The transport block set is transmitted with a first specified modulation and coding scheme. The transport bock set is received and whether the received transport block set is determined to meet a specified quality. When the specified quality is not met, a repeat request is transmitted. The first specified modulation and coding set is changed to a second specified modulation and coding set. In response to the repeat request, the transmit block set is segmented into a plurality of segments supported by the second specified modulation and coding set in accordance with the provided segmentation information. The segments are transmitted and at least two of the segments are transmitted separately. The transmitted segments are received. The segmentation process may be applied more than once for a particular TBS transmission.
Abstract:
The present invention is a system and method which controls outer loop transmit power for transmission power of an uplink/downlink communication in a spread spectrum time division communication. The system receives a communication from a base station and determines an error rate on the received communication. The system then distinguishes between static and dynamic channels, produces a static adjustment value, and characterizes the dynamic channels to generate a dynamic adjustment value. The target power level is then adjusted by the static and dynamic adjustment values, setting the transmission power level.
Abstract:
A plurality of communication signals have differing spreading codes. Each communication has an associated code comprising chips. For each chip of each communication, a vector of that chip convolved with an impulse response is produced. For each communication, support blocks comprising the chip vectors are produced. A number of the chip vectors in a support block is based on that communication's spreading factor. A system response matrix is assembled. The system response matrix has symbol sub-matrices. Each symbol sub-matrix comprises a support block from each communication. Data of the communications is detected using the symbol response matrix.
Abstract:
Data is to be estimated from a received plurality of data signals in a code division multiple access communication system. The data signals are transmitted in a shared spectrum at substantially a same time. A combined signal of the transmitted data signals are received over the shared spectrum and sampled. A channel response for the transmitted data signals is estimated. Data of the data signals is estimated using the samples and the estimated channel response. The data estimation uses a fourier transform based data estimating approach. An error in the data estimation introduced from a circulant approximation used in the fourier transform based approach is iteratively reduced.
Abstract:
A transmitter site transmits a plurality of data signals over a shared spectrum in a code division multiple access communication system. Each transmitted data signal experiences a similar channel response. A combined signal of the transmitted data signals is received. The combined signal is sampled at a multiple of the chip rate. The channel response for the combined signal is determined. A first element of a spread data vector is determined using the combined signal samples and the estimated channel response. Using a factor from the first element determination, remaining elements of the spread data vector are determined. The data of the data signals is determined using the determined elements of the spread data vector.