Abstract:
According to an aspect, a display device includes a first sub-pixel, a second sub-pixel, a third sub-pixel; and a fourth sub-pixel. A signal obtained based on at least an input signal for the first sub-pixel and an extension coefficient is supplied to the first sub-pixel. A signal obtained based on at least an input signal for the second sub-pixel and the extension coefficient is supplied to the second sub-pixel. A signal obtained based on at least an input signal for the third sub-pixel and the extension coefficient is supplied to the third sub-pixel. A signal obtained based on at least the input signal for the first sub-pixel, the input signal for the second sub-pixel, the input signal for the third sub-pixel, and the extension coefficient is supplied to the fourth sub-pixel. The extension coefficient varies based on at least a saturation of the input signals.
Abstract:
An image display apparatus includes: a grayscale conversion device configured to perform grayscale conversion processing on input data to output data; and a display device configured to operate in accordance with the output data to display an image by pixels arranged in a two-dimensional matrix state, wherein the grayscale conversion device is configured to perform first error diffusion processing for converting N0-grayscale input data into N1-grayscale data (2
Abstract:
An image processing apparatus includes an image display unit and a luminance control unit. The image display unit includes pixels arranged in a matrix, each of which is formed of a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel, and performs image display. The luminance control unit adjusts a ratio between a generation amount of first luminance generated by the first sub-pixel, the second sub-pixel, and the third sub-pixel and a generation amount of second luminance generated by the fourth sub-pixel. Over all input tones, the luminance control unit makes the generation amount of the second luminance lower than the generation amount of the first luminance and generates the second luminance so that a function representing a luminance value of the second luminance is continuous.
Abstract:
A display device includes a conversion section which generate a data conversion signal including a first number of bits from an input signal, an error dispersion section which generates a display control signal including a second number of bits that is smaller than the first number of bits from the data conversion signal and which spatially disperses errors that occur at the time of generating the display control signal, and a display panel section which displays an image on the basis of the display control signal.
Abstract:
According to an aspect, a display device includes a signal processing unit that converts an input value of a input HSV color space of an input signal into an extension value of an extended HSV color space extended with a first color, a second color, a third color, and a fourth color to generate an output signal; performs peaking processing for analyzing the input signal of the imaged image to detect a focusing region; and determines whether to perform display in a peaking mode for highlighting the focusing region. When it is determined to perform display in the peaking mode, the signal processing unit increases a value of the output signal of the fourth color of a pixel in an outer edge of the focusing region.
Abstract:
A display device includes: an image display unit that includes a plurality of main pixels in an image display region, the image display unit including sub-pixels; a light source that irradiates the image display region; a light source control unit that controls luminance of the light source; and a color information correction processing unit that corrects first color information that is obtained based on the luminance of the light source and an input video signal to second color information, when color information of at least one of a red pixel, a green pixel, and a blue pixel included in the first color information exceeds a predetermined threshold, the second information is corrected by degenerating color information of the red pixel, the green pixel, and the blue pixel, and by adding color information of the white pixel included in the first color information based on the degenerated color information.
Abstract:
A method of driving an image display apparatus which includes an image display panel having a plurality of pixels arrayed in a two-dimensional matrix and each configured from a first subpixel for displaying a first primary color, a second subpixel for displaying a second primary color, a third subpixel for displaying a third primary color and a fourth subpixel for displaying a fourth color, and a signal processing section. The signal processing section is capable of calculating a first subpixel output signal, a second subpixel output signal, a third subpixel output signal, and a fourth subpixel output signal. The method includes a step of calculating a maximum value (Vmax(S)) of brightness, a saturation (S) and brightness (V(S)), and determining the expansion coefficient (α0).
Abstract:
According to one embodiment, a display device includes a display panel, a light source, a light guide and a prism sheet. The display panel includes a display area in which unit pixels each containing first sub-pixels and second sub-pixels are arranged along a first direction and a second direction. In the display area, the first sub-pixels have a width different from that of the second sub-pixel in at least one of the first direction and the second direction, or each unit pixel contains different numbers of first sub-pixels and second sub-pixels. The prism sheet is interposed between the light guide and the display panel and includes prisms extending along a third direction inclined with respect to the second direction by an acute angle of inclination.
Abstract:
In a display device, pixels each including first to fourth subpixels that respectively display first to third primary colors and fourth color are arranged on an image display panel. A lighting unit emits light to the panel from the rear thereof. A control unit calculates a required luminance value for each block of the display surface of the panel based on an input image signal, determines a light source lighting amount of the lighting unit based on luminance distribution information on the lighting unit so as to satisfy the required luminance value, generates luminance information on each pixel based on the luminance distribution information and light source lighting amount, generates an output image signal that drives the subpixels based on the luminance information and input image signal, controls the lighting unit by the light source lighting amount, and controls the panel by the output image signal.
Abstract:
A method of driving an image display apparatus which includes an image display panel having a plurality of pixels arrayed in a two-dimensional matrix and each configured from a first subpixel for displaying a first primary color, a second subpixel for displaying a second primary color, a third subpixel for displaying a third primary color and a fourth subpixel for displaying a fourth color, and a signal processing section. The signal processing section is capable of calculating a first subpixel output signal, a second subpixel output signal, a third subpixel output signal, and a fourth subpixel output signal. The method includes a step of calculating a maximum value (Vmax(S)) of brightness, a saturation (S) and brightness (V(S)), and determining the expansion coefficient (α0).