摘要:
Shear waves are detected with ultrasound. The detection of the shear wave is constrained using prior measurements in a more controlled environment (e.g., less noise). For example, shear waves measured in a phantom are used to constrain the detection of shear waves in a patient to avoid false positive detections.
摘要:
High intensity focused ultrasound (HIFU) is registered with imaging. The effects of transmission from a HIFU transducer, such as a rise in temperature, are detected by a separate imaging system. By using multiple transmissions, a plurality of locations of the transmissions from the HIFU transducer are determined within the imaging system coordinates. A transform relating the imaging system coordinates to the HIFU transducer coordinates is determined from the detected effects. The transform may be used to relate locations indicated in images of the imaging system with coordinates of the HIFU transducer for application of HIFU. The imaging system may not have to scan the HIFU transducer or fiducials and a fixed relationship may not be needed.
摘要:
Shear wave imaging is provided in medical diagnostic ultrasound. A region is imaged to determine a location in which to calculate shear velocity. The shear velocity is estimated for the location. The imaging may guide the identification of the location, reducing the time to determine useful shear information. The estimate of shear may be validated, such as using cross-validation, to indicate the confidence level of the shear value. The shear velocity may be displayed relative to a scale of shear velocities associated with a type of tissue, such as tissue for an organ. The location on a scale may be more intuitive for a user.
摘要:
Flow is represented by a synthesized or artificial pattern. Motion is visualized by apparent displacement of pixels from one frame to the next. An artificial pattern is introduced in order to present the flow. A changing parameter, such as velocity, is viewed as a function of multiple images or over time. The rate of change of the parameter is proportional to the perceived or actual motion. Humans perceive flow as a live stream, such as tap water pouring from a faucet or a stream in a creek. Flow associated with medical imaging is presented in a similar way, such that a pattern or other flow information persists over multiple images. The flow is synthesized by generating patterns and moving the generated patterns in the field of view. The direction and rate of motion of the pattern are a function of the direction and rate of the flow.
摘要:
Using compression, tissue elasticity data from two or more different fields of view is acquired. Since different amounts of compression may be used for the different fields of view, the dynamic range of the elasticity data is updated. A panoramic elasticity image is generated from the updated elasticity data of multiple fields of view. A panoramic elasticity image represents the combined fields of view for the elasticity data.
摘要:
Using compression, tissue elasticity data from two or more different fields of view is acquired. Since different amounts of compression may be used for the different fields of view, the dynamic range of the elasticity data is updated. A panoramic elasticity image is generated from the updated elasticity data of multiple fields of view. A panoramic elasticity image represents the combined fields of view for the elasticity data.
摘要:
Flow is represented by a synthesized or artificial pattern. Motion is visualized by apparent displacement of pixels from one frame to the next. An artificial pattern is introduced in order to present the flow. A changing parameter, such as velocity, is viewed as a function of multiple images or over time. The rate of change of the parameter is proportional to the perceived or actual motion. Humans perceive flow as a live stream, such as tap water pouring from a faucet or a stream in a creek. Flow associated with medical imaging is presented in a similar way, such that a pattern or other flow information persists over multiple images. The flow is synthesized by generating patterns and moving the generated patterns in the field of view. The direction and rate of motion of the pattern are a function of the direction and rate of the flow.
摘要:
A difference between a detected motion and a reference motion is automatically displayed. The reference motion is a modeled motion of an organ, a base line motion of an organ or another portion of an organ. A deviation in motion amplitude, angle or both angle and amplitude from a reference set may more easily identify abnormal or normal motion of the organ.
摘要:
Three-dimensional elasticity imaging is provided. Motion in three-dimensions due to sources other than the stress or compression for elasticity imaging is found from anatomical information. Objects less likely to be subject to the stress or compression and/or likely to be subject to undesired motion are used to find the undesired motion. This anatomical motion is accounted for in estimating the elasticity, such as removing the motion from echo data used to estimate elasticity or subtracting out the motion from motion generated as part of estimating elasticity.
摘要:
Feedback of position is provided for high intensity focused ultrasound. The location of a beam from a HIFU transducer is determined using ultrasound imaging. The ultrasound imaging detects tissue displacement caused by a beam transmitted from the HIFU transducer. The displacement or information derived from the displacement may be used to determine a center line or point location (e.g., foci) of the tissues response to HIFU. The location of the line or point may be displayed in an image, such as an overlay or by color coding.