Abstract:
A sensor integrated circuit includes a rectifier, a power supply module, an output control circuit and a detecting circuit. The rectifier is configured to convert an external power supply into a first direct current power supply. The power supply module includes a voltage regulator configured to generate a second direct current power supply different from the first direct current power supply. The detecting circuit is powered by the second direct current power supply and configured to detect an inputted signal and correspondingly generate a control signal. The output control circuit is configured to control, in response to at least the control signal, the sensor integrated circuit to operate in at least one of a first state in which a current flows out from an output port and a second state in which a current flows in from the output port
Abstract:
A motor driving circuit and a motor component are provided. The motor driving circuit includes: a bidirectional alternating current switch connected in series with a motor across two terminals of an external alternating current power supply, where the bidirectional alternating current switch is connected between a first node and a second node; a rectifying circuit having a first input terminal and a second input terminal; a first voltage drop circuit connected between the first input terminal of the rectifying circuit and the first node; a switch control circuit connected between a control terminal of the bidirectional alternating current switch and an output terminal of the rectifying circuit; and a magnetic sensor, where an output terminal of the magnetic sensor is connected to a control terminal of the switch control circuit, and the magnetic sensor is configured to detect a magnetic field of a rotor of the motor and output a corresponding magnetic inductive signal. In this way, the motor with the motor driving circuit starts to rotate in a fixed direction every time the rotor is powered on.
Abstract:
A magnetic sensor integrated circuit includes an electronic circuit arranged on a semiconductor substrate, and input ports and first and second output ports extending out from a housing. The electronic circuit includes a magnetic field detection circuit and an output control circuit. The magnetic field detection circuit is configured to detect an external magnetic field and generate magnetic field detection information. The first output port outputs the magnetic field detection information to an outside of the housing. The output control circuit is configured to control, based at least on the magnetic field detection information, the integrated circuit to operate in at least one of a first state in which a current flows from the second output port to an outside of the integrated circuit and a second state in which a current flows from the outside of the integrated circuit to the second output port.
Abstract:
An application device, a motor component and a motor driver circuit are provided according to the invention. The motor driver circuit includes: a controllable bi-direction alternating current switch connected in series with a motor across an external alternating current power source; a switch control circuit configured to control the controllable bi-direction alternating current switch to be turned on or turned off in a preset manner; and a delay circuit configured to delay a turn-on for the controllable bi-direction alternating current switch for a preset time to decrease a phase difference between a current flowing through the motor and a counter electromotive force. The motor driver circuit can improve a power efficiency of the motor.
Abstract:
A magnetic sensor integrated circuit, a motor and an application apparatus. The magnetic sensor includes a magnetic sensor, a signal processing unit, an output control circuit and an output port. The magnetic sensor receives a constant current sense a magnetic polarity of an external magnetic field and output a differential signal. The signal processing unit amplifies the differential signal and eliminates an offset of the differential signal to obtain a magnetic field detection signal. The output control circuit control, at least based on the magnetic field detection signal, the magnetic sensor integrated circuit to operate in at least one a first state in which a current flows from the output port to the outside and a second state in which a current flows from the outside into the output port.
Abstract:
A motor driving circuit and an application device are provided. In an embodiment, an AC switch is connected between first and second nodes. A rotational direction control circuit connects to the first and second nodes and is configured to selectively connect the first node to first terminal of an AC power supply through motor winding and connect the second node to second terminal of the AC power supply, or connect the first node to second terminal of AC power supply and connect the second node to first terminal of the AC power supply through the motor winding. A detecting circuit is configured to detect magnetic pole position of the rotor. A switch control circuit is configured to control the AC switch to be turned on or be turned off in a predetermined way based on magnetic pole position signal and potential difference between the first and second nodes.