Abstract:
A load connecting mechanism includes a mounting portion, a contact portion, and a force-exerting portion. The mounting portion is configured to mount the load connecting mechanism to a power source and a load, respectively. The contact portion is disposed on the mounting portion and includes two slidably coupled contact faces. The force-exerting portion is configured to provide a force to the contact faces in an axial direction of the power source to make the contact faces closely slidably couple to each other. Through the slidable coupling relationship between the contact faces, power of the power source is progressively transmitted to the load and finally drives the load to rotate in synchronization with the power source. The present invention further provides a motor driving assembly and a fan. The mechanism can satisfy the needs of bidirectional rotation of a load such as a fan and of large startup torque.
Abstract:
A motor assembly and an integrated circuit for motor drive. The motor assembly includes a single-phase permanent-magnet synchronous motor capable of being powered by an AC power source and an integrated circuit, wherein the single-phase permanent-magnet synchronous motor comprises a stator and a permanent-magnet rotor capable of rotating relative to the stator, the stator comprises a stator iron core and a stator winding wound on the stator iron core, the integrated circuit comprises: a housing and enabling the single-phase permanent-magnet synchronous motor to be started along a fixed direction when the drive circuit is energized each time.
Abstract:
The present teaching relates to a magnetic sensor comprising an input port to be connected to an external power supply, a magnetic field detecting circuit configured to generate a magnet detection signal, an output control circuit configured to control operation of the magnetic sensor in response to the magnet detection signal, and an output port. The magnetic field detecting circuit includes a magnetic sensing element configured to detect an external magnetic field and output a detection signal, a signal processing element configured to amplify the detection signal and removing interference from the detection signal to generate processed detection signal, and an analog-digital conversion element configured to convert the processed detection signal into a magnet detection signal, and the output control circuit is configured to control the magnetic sensor to operate in at least one of a first state and a second state responsive to at least the magnet detection signal.
Abstract:
An electronic device and a magnetic sensor integrated circuit thereof are provided. The magnetic sensor integrated circuit includes a shell, a semiconductor substrate installed in the shell and a first to a third port extending from the shell. A rectifier and a position sensor are provided on the semiconductor substrate. The rectifier includes first and second output terminals and two input terminals respectively connected to the first and second ports. In a case that the first and second ports are positively or negatively connected to an external power supply, a voltage output by the first output terminal of the rectifier is higher than the voltage output by the second output terminal of the rectifier. The position sensor is connected to the first and second output terminals of the rectifier, and a magnetic field signal detected by the position sensor is output by the third port.
Abstract:
The present teaching relates to a magnetic sensor residing in a housing. The magnetic sensor includes an input port and an output port, both extending from the housing, wherein the input port is to be connected to an external alternating current (AC) power supply. The magnetic sensor also includes an electric circuit which comprises an output control circuit coupled with the output port and configured to be at least responsive to a magnetic induction signal and the external AC power supply to control the magnetic sensor to operate in a state in which a load current flows through the output port. The magnetic induction signal is indicative of at least one characteristic of an external magnetic field detected by the electrical circuit and the operating frequency of the magnetic sensor is positively proportional to the frequency of the external AC power supply.
Abstract:
A motor assembly, an integrated circuit and an application device including the motor assembly are provided. The motor assembly includes a motor and a motor driving circuit, the motor driving circuit includes a step down circuit, and the step down circuit includes a first current branch and a second current branch which are turned on selectively. The step down circuit can be integrated in an application specific integrated circuit to reduce the complexity and cost of the circuit.
Abstract:
The present teaching relates to a magnetic sensor comprising an input port, a magnetic field detecting circuit that generates a magnet detection signal, an output control circuit that controls operation of the magnetic sensor, and an output port. The magnetic field detecting circuit includes a magnetic sensing element that detects an external magnetic field and output a detection signal, a signal processing element configured to amplify the detection signal and removing interference from the detection signal, and an analog-digital conversion element configured to convert the processed detection signal into a magnet detection signal, and the output control circuit controls the magnetic sensor to operate in at least one of a first state and a second state responsive to at least the magnet detection signal, wherein the signal processing element comprises a folded cascode amplifier.
Abstract:
An integrated circuit includes a housing, a semiconductor substrate arranged in the housing, several pins extended out from the housing, and an electronic circuitry having a rectifier arranged on the semiconductor substrate. The rectifier includes a controllable switch.
Abstract:
The present teaching relates to a magnetic sensor comprising an input port, a magnetic field detecting circuit that generates a magnet detection signal, an output control circuit that controls operation of the magnetic sensor, and an output port. The magnetic field detecting circuit includes a magnetic sensing element that detects an external magnetic field and output a detection signal, a signal processing element configured to amplify the detection signal and removing interference from the detection signal, and an analog-digital conversion element configured to convert the processed detection signal into a magnet detection signal, and the output control circuit controls the magnetic sensor to operate in at least one of a first state and a second state responsive to at least the magnet detection signal, wherein the signal processing element comprises an amplifier and a filter circuit, and gain of the amplifier is greater than gain of the filter circuit.
Abstract:
The present teaching relates to a method/apparatus for a magnetic sensor. The apparatus of the magnetic sensor resides in a housing and includes an input port and an output port, both extending from the housing. The apparatus also includes an electrical circuit which comprises a magnetic field detecting circuit, configured to detect an external magnetic field and output a magnetic induction signal that is indicative of information related to the external magnetic field, an output control circuit coupled between the magnetic field detecting circuit and the output port, and a state control circuit coupled with the output control circuit and configured to determine whether a predetermined condition is satisfied and signal the same to the output control circuit. When the predetermined condition is satisfied, the state control circuit is at least responsive to the magnetic induction signal to enable the output control circuit to control the magnetic sensor to operate in at least one of a first state and a second state. In the first state, a load current flows in a first direction from the output port to outside of the magnetic sensor. In the second state, a load current flows in a second direction opposite of the first direction from outside of the magnetic sensor into the magnetic sensor via the output port. When the predetermined condition is not satisfied, the state control circuit enables the output control circuit to control the magnetic sensor to operate in a third state.