Abstract:
A fluid sprayer includes a housing, a pump, a nozzle, a high voltage direct current (HVDC) brushed electric motor that drives the pump, and a motor controller electrically connected to the motor. The motor controller drives the motor with a high speed pulse width modulated (PWM) drive signal that switches current through the motor on and off. The motor controller varies the PWM signal as a function of a spray setting input and sensed current through the motor.
Abstract:
The present teaching relates to a magnetic sensor residing in a housing. The magnetic sensor includes an input port and an output port, both extending from the housing, wherein the input port is to be connected to an external alternating current (AC) power supply. The magnetic sensor also includes an electric circuit which comprises an output control circuit coupled with the output port and configured to be at least responsive to a magnetic induction signal and the external AC power supply to control the magnetic sensor to operate in a state in which a load current flows through the output port. The magnetic induction signal is indicative of at least one characteristic of an external magnetic field detected by the electrical circuit and the operating frequency of the magnetic sensor is positively proportional to the frequency of the external AC power supply.
Abstract:
A power tool includes a multi-phase BLDC motor, a plurality of switches, an input unit, and a controller. For each phase, the controller operates to vary power output to the motor between a first power and a second power by varying a duty cycle of a PWM signal from 0% to 100% while keeping a conduction band (CB) of corresponding motor switches and/or an advance angle (AA) at a predetermined value when the input unit moves between a first position and a predetermined position between the first and a second position. For each phase, the controller operates to increase the power output by the motor to greater than the second power by increasing the CB/AA to greater than the predetermined value while keeping the duty cycle of the PWM signal at 100% when the input unit moves between the predetermined position and the second position.
Abstract:
A direct current electrical machine, which includes a rotor that generates a rotor magnetic field, a first commutation cell that includes a winding component, a first switching device, and a second switching device. The first winding component includes a first portion electrically coupled between a first terminal and a second terminal of the first winding component and a second portion electrically coupled between a third terminal and the second terminal of the first winding component. The first switching device is electrically coupled to the first terminal and is closed when a first voltage induced across the first portion by rotation of the rotor magnetic field is positive; and the second switching device is electrically coupled to the third terminal and is closed when a second voltage induced across the second portion by the rotation of the rotor magnetic field is negative.
Abstract:
Methods and systems include an actuator 40 adapted to provide drive power and hold power to an external device. A motor 34 provides for driving the external device to a determined position when the motor 34 is energized. A switching circuit is configured to energize the motor 34 with a high voltage to drive the external device to the determined position and energize the motor 34 with a low voltage to hold the external device in the determined position.
Abstract:
The present teaching relates to a magnetic sensor comprising an input port to be connected to an external power supply, a magnetic field detecting circuit configured to generate a magnet detection signal, an output control circuit configured to control operation of the magnetic sensor in response to the magnet detection signal, and an output port. The magnetic field detecting circuit includes a magnetic sensing element configured to detect an external magnetic field and output a detection signal, a signal processing element configured to amplify the detection signal and removing interference from the detection signal to generate processed detection signal, and an analog-digital conversion element configured to convert the processed detection signal into a magnet detection signal, and the output control circuit is configured to control the magnetic sensor to operate in at least one of a first state and a second state responsive to at least the magnet detection signal.
Abstract:
The present teaching relates to a magnetic sensor comprising an input port, a magnetic field detecting circuit that generates a magnet detection signal, an output control circuit that controls operation of the magnetic sensor, and an output port. The magnetic field detecting circuit includes a magnetic sensing element that detects an external magnetic field and output a detection signal, a signal processing element configured to amplify the detection signal and removing interference from the detection signal, and an analog-digital conversion element configured to convert the processed detection signal into a magnet detection signal, and the output control circuit controls the magnetic sensor to operate in at least one of a first state and a second state responsive to at least the magnet detection signal, wherein the signal processing element comprises an amplifier and a filter circuit, and gain of the amplifier is greater than gain of the filter circuit.
Abstract:
A motor driving circuit and a motor component are provided. The motor driving circuit includes a bidirectional alternating current switch connected in series with a motor across two terminals of an external alternating current power supply, where the bidirectional alternating current switch is connected between a first node and a second node; a rectifying circuit; a magnetic sensor, configured to detect a magnetic field of a rotor and output a corresponding magnetic inductive signal; a first voltage drop circuit and a second voltage drop circuit connected in series between the first input terminal of the rectifying circuit and the first node, where there is a third node between the first voltage drop circuit and the second voltage drop circuit, and the first voltage drop circuit is connected between the first node and the third node; a switch circuit connected between the third node and a control terminal of the bidirectional alternating current switch, where the switch circuit includes a first terminal, a second terminal, a control terminal and a switch arranged between the first terminal and the second terminal; and a switch control circuit connected between the control terminal of the switch circuit and an output terminal of the magnetic sensor.
Abstract:
An integrated circuit, a motor component including the integrated circuit and an application device having the motor component are provided according to embodiments of the present disclosure. The integrated circuit includes a housing, an integrated circuit die arranged inside the housing and multiple pins extended out from the housing. The integrated circuit die has a conductive back plate and an electronic circuit arranged on the conductive back plate. The multiple pins include an input pin and an output pin, each of the multiple pins has a lead frame inside the housing. And the conductive back plate is fixed to the lead frame of at least one ungrounded pin of the multiple pins in a manner of electrical insulation, thereby avoiding an short circuit for the integrated circuit due to an electrical connection between the conductive back plate and the lead frame fixed to the conductive back plate.
Abstract:
A drive circuit for an electric motor connected in series with an AC power source between a first node and a second node. The drive circuit includes a controllable bidirectional AC switch, an AC-DC conversion circuit connected in parallel with the controllable bidirectional AC switch between the first node and the second node, a position sensor configured to detect a position of a rotor of the motor, and a switch control circuit configured to control the controllable bidirectional AC switch to be conductive or non-conductive in a predetermined way, based on the position of the rotor and a polarity of the AC power source.