摘要:
A scaling apparatus and method scales uncertainty criteria (horizontal and vertical accuracy requirements) originally received from an end user before the uncertainty criteria is sent on to a wireless terminal (30) as requirements on the accuracy of location positioning performed by/for the wireless terminal. In an example embodiment the amount/degree of scaling is selected according to a configured best estimate of the confidence and uncertainty relation, and such best estimate can be based on the majority of the terminals of the network. For a WCDMA radio access network (RAN) case the scaling can be performed in a radio network controller (RNC). For a Long Term Evolution (LTE) radio access network (RAN) case the scaling can be performed in the evolved Serving Mobile Location Center (eSMLC) node. In another case the scaling can alternatively be performed in the wireless terminal itself.
摘要:
The position of a mobile device served in a cell of a serving node of a wireless communication network is estimated by estimating an angle-of-arrival (AoA) between the mobile device and the serving node based on a precoding matrix indicator (PMI) determined for the serving node in a downlink direction or for the mobile device in an uplink direction. Also estimated is the AoA between the mobile device and a non-serving neighbor node of the wireless communication network based on a PMI determined for the neighbor node in the downlink direction or for the mobile device in the uplink direction. The downlink and/or uplink AoA estimation can be further enhanced by employing interference cancellation in the mobile device and in the radio node, respectively. The position of the mobile device is estimated based on the estimated AoAs.
摘要:
A method for noise rise estimation in a wireless communication system comprises measuring (210) of received total wideband power of an antenna a plurality of times. An estimate of a noise floor measure is computed (212) based on at least a number of the measured received total wideband powers of the antenna. Interference whitening of a received signal is performed (214) per user for a multitude of users. A useful signal power per user after the interference whitening, preferably Frequency Domain Equalization, is determined (216). A noise rise measure per user is calculated (220), based at least on the useful signal power per user and the noise floor measure. The calculation in turn comprises compensation of the noise rise measure per user for the effects of the interference whitening. An arrangement for noise rise estimation is adapted for such a method. A radio base station comprises such an arrangement.
摘要:
A wireless device (24) receives a reference signal over a radio channel (21). The reference signal may be Positioning Reference Signals (PRS) and/or Common Referencing Signals (CRS), and may be transmitted from a transmitter (22). The wireless device (24) comprises a correlator (100); a reference signal detector (102); a threshold selector (106); and a reference signal analyzer (108). The correlator (100) use a signal received from the radio channel (21) and a replica of the reference signal to provide a correlator output value. The reference signal detector (102) compares the correlator output value with a threshold value to detect presence of a reference signal, and to estimate an arrival time of the reference signal. The threshold selector (106) adapts the threshold value to at least an estimate of a relative amount of noise and interference power in the received signal.
摘要:
Methods and arrangements in a first network node, a second radio network node and a mobile terminal for enabling estimation of a position of a mobile terminal are provided. The first network node receives a request for estimating the position of the mobile terminal. The first network node determines a first set of radio network nodes including the second radio network node and two additional radio network nodes. The first network node determines positioning signals for transmission from radio network nodes of the first set to the mobile terminal. The first network node instructs each of the radio network nodes of the first set to transmit the positioning signal, associated therewith, to the mobile terminal.
摘要:
Apparatus and method for reducing an air interface load in a communication network. A base station is provided with a receiver adapted to receive signals from a terminal via a Dedicated Physical Control Channel (DPCCH) and a second control channel. A measuring unit measures a signal to interference ratio (SIR) of the DPCCH. An effective SIR determining unit determines an effective SIR on the basis of the measured SIR of the DPCCH and an estimate of the SIR of the second control channel. A comparison unit compares the effective SIR with a target SIR, and a power determination unit determines a power control command for controlling power usage for the DPCCH on the basis of the comparison. A transmitter sends a message to the terminal, the message including the power control command. The invention allows the DPCCH power (or DPCCH SIR) operating point to be maintained at a low level.
摘要:
A method in a positioning node (100) for selecting a positioning method is provided. The positioning node is connected to a plurality of radio access networks of different access technologies and to a plurality of core networks. The positioning node receives (201) from a requesting node, a request for a positioning of a terminal. The request comprises at least one of a plurality of client types, and at least one of a plurality of quality of service parameters. The positioning node then selects (204) at least one positioning method of a plurality of positioning methods of the different plurality of radio access networks and or radio access technologies for positioning the terminal. The selection of the positioning method is based on the received at least one client type and at least one quality of service parameters of the request.
摘要:
Reliable and efficient search windows are provided by allowing the adaptation of the code search window to be dependent on inaccuracy measures of relations between a cellular frame time and a satellite reference time. This inaccuracy is calculated in a positioning node (21) of the cellular communications system (1), preferably by filtering of measurements received from user equipments. Linear trend Kalman filtering followed by post processing of estimation errors is presently preferred. In order to ensure non-ambiguous interpretation of the received time stamps of received satellite signals (55) provided by user equipments (10), a pseudo propagation delay is computed in both the user equipment (10) and the positioning node (21) based on GPS acquisition assistance data. The GPS time stamp is then defined referring to the determined pseudo propagation delay. In a preferred embodiment, the pseudo propagation delay is assured to be situated within a pre-determined time interval.
摘要:
A wireless communication network determines positioning data for a given mobile terminal, in response to receiving a positioning event trigger for that mobile terminal. The network sends the positioning data to the mobile terminal via control-plane signaling, for transfer by the mobile terminal to the user plane. Correspondingly, the mobile terminal receives the positioning data over the control plane, transfers it to the user plane, and transmits the positioning data or location information derived from the positioning data, via user-plane signaling. As such, network-performed positioning measurements and/or geographic coordinate data derived therefrom are transferred from the control plane, to the user plane, for flexible and transparent transmission from the mobile terminal to a given node having a user-plane connection with the mobile terminal. Such a node may be essentially any type of communication device, system, or server, internal or external to the network.
摘要:
The present invention relates to a method and an arrangement in a mobile telecommunication network for detection of a UE transmitted signal. The arrangement comprises means for detecting the signal during the time ttot, wherein said means comprises a correlator adapted for combined coherent and non-coherent correlation, wherein the length of the coherent correlation interval is L signal samples, the number of coherent correlation intervals is M and the coherent correlation results in a coherent correlation result for each of the coherent detection intervals M, and means for adding the coherent correlation results non-coherently. Further, the arrangement comprises means for selecting one of the length L of coherent detection interval and the total detection interval ttot based on at least one of the parameters cell size, UE speed and acceleration, number of participating Location Measurements Units and a desired total false alarm rate.