Abstract:
In an apparatus such as a turbo decoding apparatus in which it is necessary to carry out interleave operation and deinterleave operation, there are provided a memory unit (5) and a memory control unit (12) capable of changing data writing order and data reading order with respect to the memory unit (5) depending on whether data is to be interleaved or deinterleaved. With this arrangement, the single unit of memory (5) can function as an interleaver and a deinterleaver, thereby reducing the size and cost the device.
Abstract:
A receiving apparatus in a communication system in which when a systematically encoded signal cannot be decoded correctly on a receiving side, the signal is retransmitted from a transmitting side. The receiving apparatus combines stored data, which has been generated based upon data already received, and newly received data, decides a range of quantization levels of the combined data using an average level only of systematic bits of the stored data and newly received data, quantizes the combined data based upon the range of quantization levels and number of quantization bits, applies decoding processing to the quantized data, notifies the transmitting side of whether decoding could be performed correctly, and stores the combined data as the stored data when decoding cannot be performed correctly.
Abstract:
A receiving device and a communication system wherein the frequency usage efficiency is raised to improve the communication throughput. The receiving device comprises a receiving unit that receives multicarrier signals in which a plurality of subcarriers are divided into a plurality of subcarrier blocks (frequency blocks) each including at least one subcarrier and in which signals to be transmitted to receiving devices are allocated on a subcarrier block basis; an estimating unit that estimates, for each of the subcarrier blocks, quality values indicative of the reception statuses of the signals allocated to the plurality of subcarrier blocks; and a notifying unit that notifies a transmitting device of information indicative of a high quality subcarrier block having a high quality value in the quality values, a quality value in the high quality subcarrier block, and an interval of the subcarrier blocks having the quality value of which a difference from the quality value in the high-quality subcarrier block falls within a predetermined threshold value.
Abstract:
Disclosed are an error-detecting encoding apparatus for creating parity bits by error-detecting encoding processing, appending the parity bits to an input data string and encoding the data string, and an error-detecting decoding apparatus for detecting error using these parity bits. Data segmenting means segments an input data string, which is to undergo error-detecting encoding, into a plurality of sub-data strings, dividing means divides the segmented sub-data strings by a polynomial, which is for generating an error-detecting code, and calculates remainders, converting means applies conversion processing, which conforms to a segmentation position of the sub-data strings, to the remainders on a per-remainder basis, and combining means combines converted values, which have been obtained by the conversion processing, and outputs parity bits. An encoder appends this parity to a data string, and a decoder detects error using this parity.
Abstract:
Disclosed is a transmission device in a communication system in which a systematic code obtained by systematic encoding of information bits into which dummy bits are inserted and by deleting the dummy bits from the results of the systematic encoding is transmitted and, on the receiving side, the dummy bits which had been deleted on the transmitting side are inserted into the received systematic code, and then decoding is performed. In this transmission device, a dummy bit insertion portion decides the size of the dummy bits to be inserted into the information bits based on a specified code rate or based on the physical channel transmission rate, and uniformly inserts dummy bits of this size into the information bits; a systematic code generation portion performs systematic encoding of the information bits into which the dummy bits are inserted, and deletes the dummy bits from the results of the systematic encoding to generate a systematic code, which is transmitted.
Abstract:
A mobile user terminal (UE), which measures downlink channel quality, and which transmits downlink quality information indicating the measured downlink channel quality and an uplink pilot signal to be used for measuring uplink channel quality to a base station (BS), comprises a transmit time control unit (216), which synchronizes transmit time of the downlink quality information and transmit time of the uplink pilot signal relative to each other. And/or the mobile user terminal (UE) comprises a radio transmitting unit (212) which transmits the downlink quality information and the uplink pilot signal by using the same carrier frequency or by using adjacent carrier frequencies selected from among a plurality of preassigned carrier frequencies.
Abstract:
An outer-loop power control method and a communication apparatus having an outer-loop power control function for increasing target SIR if an error is detected in a block-error observation interval and decreasing target SIR if not a single error is detected in the block-error observation interval. At least one of the block-error observation interval, an incrementing step for when target SIR is increased and a decrementing step for when target SIR is decreased is varied based upon the number of erroneous blocks among error-detecting blocks contained in a transmission time interval TTI.
Abstract:
A receiving apparatus in a communication system in which when a systematically encoded signal cannot be decoded correctly on a receiving side, the signal is retransmitted from a transmitting side. The receiving apparatus combines stored data, which has been generated based upon data already received, and newly received data, decides a range of quantization levels of the combined data using an average level only of systematic bits of the stored data and newly received data, quantizes the combined data based upon the range of quantization levels and number of quantization bits, applies decoding processing to the quantized data, notifies the transmitting side of whether decoding could be performed correctly, and stores the combined data as the stored data when decoding cannot be performed correctly.
Abstract:
The present invention relates to a handover method in CDMA mobile communication. In particular, a mobile station MS measures a time difference &tgr; between a frame timing in a traffic channel and a frame timing in a perch channel from a second base station BS2. The mobile station transmits the time difference &tgr; to a base station in communication BS1 with the mobile station. The base station BS1 sends the time difference &tgr; and a frame number FN# of the upstream traffic channel to the base station BS2. The base station BS2 corrects the phase of the spreading code for despreading the upstream traffic channel based on the received time difference &tgr; of the frame timing and the notified frame number FN#.
Abstract:
In an apparatus such as a turbo decoding apparatus in which it is necessary to carry out interleave operation and deinterleave operation, there are provided a memory unit (5) and a memory control unit (12) capable of changing data writing order and data reading order with respect to the memory unit (5) depending on whether data is to be interleaved or deinterleaved. With this arrangement, the single unit of memory (5) can function as an interleaver and a deinterleaver, thereby reducing the size and cost the device.