摘要:
An ignition coil unit comprises a coil assembly (55) having an ignition coil (A), a power switch circuit (B) having a plurality of electric and electronic components therein for interrupting an electric current flowing through the ignition coil (A) and a terminal conductor (8) for electrically connecting the coil assembly (55) to an external circuit, and an electrically insulating transfer-molded resin (50) disposed around the coil assembly (55) for supporting therein the coil assembly (55). Further, the ignition coil (A), the power switch circuit (B) and the terminal conductor (8) are mechanically connected into the coil assembly (55). The present invention also resides in a method for manufacturing the same.
摘要:
An ignition coil unit comprising within an electrically insulating casing (31) an ignition coil (A) and a packaged power switch circuit (E). The packaged power switch circuit (E), which comprises a plurality of electric and electronic components (F) hermetically sealed within a mold resin (G) to form a single compact unitary piece, is disposed within a power switch cavity (31d) of the casing (31). An aluminum heat dissipating plate (30) may be attached at its first end (30a) to said packaged power switch circuit (E) in a thermally conductive relationship and exposed at its second end (30b) to the exterior of said casing (31).
摘要:
An engine ignition device comprises a circuit which generates a bias voltage corresponding to the engine rpm and superimposes it on an ignition signal so that the closing rate of the primary power feeding circuit for an ignition coil is controlled, a switching operation level setting circuit for generating a set voltage which changes with the engine rpm at startup or idling, and a comparison circuit having a first input receiving the ignition signal and superposed bias voltage and a second input receiving the set voltage, and generating an inverted output. The magnitude of the set voltage is changed in response to the engine rpm between the starting time and the idling time such that when the engine is started, the potential difference between voltages at the input terminals of the comparison circuit, as determined by the bias and set voltages, assumes a first value smaller than the ignition signal voltage, and when the engine is idling, the potential difference assumes a second value smaller than the ignition signal voltage, but larger than the first value.
摘要:
An ignition apparatus for an engine reduces the duty cycle of a power transistor circuit for controlling the primary winding current of an ignition coil over the entire operating range of the engine including low and high speeds. In one embodiment, a signal generator generates an alternating output signal which is fed through a resistor to a wave form shaper for comparison with a threshold voltage. As long as the signal generator output is higher than the threshold voltage, the wave form shaper generates an output pulse for controlling a conduction time of the power transistor circuit. When the engine is operating at low speeds, the pulse width of the wave form shaper output is reduced by partially absorbing the signal generator output by a current absorbing circuit which is disabled at high engine speeds. In another embodiment, at high engine speeds, a DC current is supplied from a DC power source to a signal generator via a resistor through a current supply circuit which is disabled by a switching transistor at low enging speeds. In both of the embodiments, the signal generator has one end connected to ground and the other end connected at a single external connection point with the wave form shaper through the resistor.
摘要:
An ignition apparatus for an internal combustion engine is capable of avoiding mis-ignition even if subject to external disturbances when a fail signal is transmitted through a common signal line on which an ignition signal can also be transmitted. An igniter is connected to receive the ignition signal from an ECU, and includes a waveform shaper connected with the signal line and having an input connected in parallel to an input resistance so as to make a voltage at the input higher than a prescribed voltage when the ignition signal flows into the input resistance, and a pulse output circuit connected to the input and having an output for generating the fail signal into which a secondary coil current is converted. The pulse output circuit adjusts a fail signal current such that the voltage at the input when the fail signal flows into the input resistance becomes less than the prescribed voltage.
摘要:
Ion current detection signal output section for outputting an ion current detection signal including a failure determination signal of an ignition operation is provided, and a failure determination as well as a combustion state can be performed based on this ion current detection signal.
摘要:
To obtain a knock detection apparatus which may obtain a good knock pulse S/N even if an ionic current generation amount is changed by the change of a kind of fuel or plugs, a knock detection apparatus for detecting a knock generated, in an internal combustion engine, in which a vibratory component superimposed on an ionic current generated by combustion of fuel is extracted, the component that is equal to or more than a knock detection threshold value is shaped in waveform into a pulse waveform, a knock strength is calculated through counting and calculation process of the number of pulses of the pulse waveform by an engine controlling unit, an ignition timing is controlled on the basis of the knock strength, comprises a knock detection threshold value adjusting unit for changing the knock detection threshold value on the basis of information of an ionic current.
摘要:
An ignition apparatus for an internal combustion engine includes a power switch 16 for intermittently feeding a primary current to an ignition coil, and primary and secondary coils 5, 6 of the ignition coil contained in an insulation case 1 with the power switch and fixed by an insulating resin material 15 poured into the case. An insulating member 21 is interposed between the secondary coil 6 and the power switch 16 for suppressing thermal flow between the secondary coil 6 and the power switch 16. with this arrangement, a temperature increase caused by thermal interference between the ignition coil and the power switch is thus suppressed.
摘要:
A current limiter in an ignition apparatus for an internal combustion engine including a differential amplifier 20 is able to limit a primary winding current of an ignition coil to a prescribed limit value which is independent of a voltage as sensed by a current sensing resistor 11, thus providing a highly stable operating characteristic. The factor of current amplification of the differential amplifier can be increased without accompanying oscillations of the current limiter. The current sensing resistor senses a voltage corresponding to a current flowing from the primary winding of the ignition coil to a power transistor 4 which turns on and off the power supply to the ignition coil. A reference voltage source 12 generates a reference voltage for comparison with the voltage sensed by the current sensing resistor. A differential amplifier absorbs a part of a base current supplied from a storage battery to a base of the power transistor on the basis of a difference between the reference voltage and the voltage sensed by the current sensing resistor. A plurality of output transistors 25, 102 are coupled to form a Darlington circuit which is connected between the differential amplifier and the base of the power transistor. Another reference voltage source 12" may be provided for generating a second reference voltage, the second reference voltage source being connected between the current sensing resistor and the second input terminal of the differential amplifier for supplying thereto a total sum of the voltage sensed by the current sensing resistor and the second reference voltage.
摘要:
The power transistor unit 2A for controlling the current supply to the primary side of the ignition coil 3 includes a light emitting diode 10 coupled to the output of the control unit 1, and a phototransistor 11 optically coupled to the light emitting diode 10. The light emitting diode 10 and the phototransistor 11 together constitute a optoisolator. Thus, the ignition coil 3 is electrically isolated from the control unit 1, and hence a filter circuit for suppressing noise from the ignition coil 3 can be dispensed with.