Abstract:
Even when detecting the primary voltage of the primary coil side, without detecting the secondary voltage of the secondary coil side of high voltage, it is desired to provide a discharge state detecting apparatus of an internal combustion engine which can detect a spark discharge state with good accuracy, by reducing influences of the discharge current and the resistance component of the discharge path of the secondary coil side, which are generated in the primary voltage. A discharge state detecting apparatus of an internal combustion engine performs correction which reduces a signal component generated by the secondary current in the ignition coil from the primary voltage detected by the primary voltage detector, based on the detected secondary current, and outputs a primary voltage after correction; and determines a spark discharge state based on the primary voltage after correction.
Abstract:
An ignition coil unit is attached to an engine body. The engine body includes a cylinder head having a plug hole and a head cover that covers the cylinder head by including an opening hole facing the plug hole. The ignition coil unit includes a coil unit that generates a high voltage and a cylindrical coupling unit that connects the coil unit with a spark plug. The coupling unit includes a flexible sealing section fitting to an outer peripheral surface of the high tension tower and a harder joint fitting to a tip of the sealing section. The sealing section includes an adhesion portion to tightly contact the head cover and a neck portion at least between the adhesion portion and the joint in a Z-axis direction. The neck portion is formed by partially constricting an outer peripheral surface of the sealing section radially inside.
Abstract:
A method is for starting a combustion engine having a pull-rope starter. A fuel/air mixture is fed to the engine via an intake channel. The mixture is ignited by a spark plug. The combustion drives the piston downward and drives a crankshaft rotationally. The fuel system has a fuel channel opening into the intake channel. An electric fuel valve is open in its currentless state and closes a fuel channel only when an operating voltage is applied. An electronic control unit actuates the fuel valve and triggers an ignition spark and is utilized by a generator to supply energy to the control unit, the fuel valve and the ignition device. To prevent excessive enriching of the fuel/air mixture during starting, the energy, which is generated at the beginning of the rotation of the crankshaft, is used to first close the fuel valve before the control unit triggers an ignition spark.
Abstract:
In an internal combustion engine that causes a predetermined gas flow in a combustion chamber, discharge plasma generated by a discharge device is caused to effectively absorb energy of an electromagnetic wave emitted from an electromagnetic wave emission device. At a time when a discharge operation and an emission operation are simultaneously performed so as to ignite a fuel air mixture, an emitting position of the electromagnetic wave on an antenna during the emission operation is located downstream of the discharge gap in a direction of the gas flow at the discharge gap so as to face toward the discharge plasma that has been drifted due to the gas flow.
Abstract:
The embodiments described herein include systems with a variable reluctance sensor (VRS) interface and methods of their operation. Embodiments of VRS interfaces include a clearing signal generator configured to generate a clearing signal corresponding with the timing of a noise event. The clearing signal may be configured to clear a post-processing circuit.
Abstract:
A method for operating a vehicle is provided with an electric machine connected to a battery of less than 150 volts and coupled to an internal combustion engine such that a crankshaft of the engine rotates at all times the electric machine operates to supply power from the battery and all times the electric machine operates to capture power for storage in the battery. Motive force is provided to the vehicle with power output by the internal combustion engine. During movement of the vehicle, ignition of the engine is ceased in response to an engine load below a specified threshold. Pumping losses and drive train drag are reduced by altering at least one mechanical property of the internal combustion engine.
Abstract:
A superior ignitability is realized assuredly by specifying at least either of a relation in magnitude between absolute values of a plus-side voltage and a minus-side voltage and a relation in magnitude between absolute values of a plus-side current and a minus-side current when alternating current power is introduced. An ignition system includes a spark plug, a discharging power supply which applies a voltage to a spark gap of the spark plug to thereby generate an electric spark discharge and an alternating current power supply which introduces alternating current power to an electric spark generated by the electric spark discharge to generate an alternating current plasma.
Abstract:
An ignition magneto adapter and, more specifically, an adapter to relocate an ignition magneto from the rear of an engine to the front of an engine. The adapter includes a timing gear cover mounted to the engine, an oil pump adapter in contact with the timing gear cover, and a magneto base adapter having a stem, shaft, and upper and lower bearings, the magneto base adapter being located adjacent to the oil pump adapter and in contact with the timing gear cover, wherein the ignition magneto is located on and supported by the stem of the magneto base adapter.
Abstract:
An ignition control device and corresponding method are provided for suppressing reverse rotation of the engine during startup process of a light duty gasoline engine, the ignition control device includes: a charge coil, a transformer, an electric-spark-generating control circuit, a trigger coil, a position sensing circuit, and a micro-controller. The position sensing circuit is used to shape the positive signal and negative signal of the second alternating current signal induced by the trigger coil while the fly wheel rotates respectively to generate a first position signal and a second position signal. According to the first position signal and the second position signal, it is determined by the micro-controller whether the engine is in the state of reverse rotation, and if YES, output of the ignition signal is stopped to make engine halt due to absence of reverse power.
Abstract:
An ignition source for initiating combustion is provided. The ignition source includes an electrical delivery conductor mounted in a delivery conductor mounting structure. An electrical ground conductor is mounted in a ground conductor mounting structure and extends from the ground conductor mounting structure to a point proximate the delivery conductor to define an ignition spark gap between the delivery conductor and the ground conductor. At least one of the delivery conductor and the ground conductor are mounted in a respective one of the delivery conductor mounting structure and the ground conductor mounting structure so as to be selectively positionable with respect to the other one of the delivery conductor and the ground conductor to selectively adjust a width of the ignition spark gap.