摘要:
A pneumatic tire has two belt layers, each having a plurality of strip pieces formed by pulling together and rubberizing a plurality of steel cords. Strip piece width, strip piece thickness, belt layer cord angle with respect to a tire circumferential direction, numbers of the strip pieces of inner and outer belt layers, and circumferential lengths of the inner and outer belt layers are respectively denoted by A, G, θ, N1, N2, L1 and L2. N2 is equal to N1, and N1 is an integer satisfying L1=N1×A/sin θ. The inner belt layer is formed by joining the N1 strip pieces so each side of each strip piece is butted with one side of another strip piece. The outer belt layer is formed by aligning the N2 strip pieces on the inner belt layer in the tire circumferential direction with spaces of width 2πG/N2 disposed between adjacent strip pieces.
摘要:
The overall material constant of a composite material is computed where the composite material includes multiple kinds of material components in a matrix phase, each of the material constants of the material components and the matrix phase being known. First, for the composite material, an equation, having the material constant of a virtual composite material as an unknown, is prepared by defining the virtual composite material in which each of the material components is dispersed in a form of spherical particles in the matrix phase at a known volume fractions. Next, the overall material constant of the virtual composite material is found as the overall material constant of the composite material by solving the equation. In this case, the equation is a recursive equation which is obtained using the self-consistent method. The volume fraction of a material component in the composite material is computed using the equation.
摘要:
Disclosed is a pneumatic tire in which formation of a belt layer is realized by using an integer number of strip pieces and without causing any overlap between the strip pieces, and a method of manufacturing the same. The method is a method of manufacturing a pneumatic tire provided with a belt layer composed of a plurality of strip pieces each of which is formed by pulling together and rubberizing a plurality of steel cords. In the method, when a width of the respective strip pieces, an applicable number of the strip pieces, a cord angle of the belt layer with respect to a circumferential direction of the tire, and a circumferential length of the belt layer are respectively denoted by A, N, θ, and L, an integer satisfying (N+1)×A/sin θ>L>N×A/sin θ is selected as the applicable number N, and the belt layer is formed by aligning the N strip pieces on a molding drum in the circumferential direction of the tire with equal spaces disposed between adjacent ones thereof.
摘要:
In a tire designing method, at least one of a tire profile shape, a shape of a tire component member and physical property data of the tire component member is tentatively selected as a parameter to prepare an initial tire model (30) representing the pneumatic tire by using a finite number of elements, and at least one of a stress acting on the initial tire model by the inner pressure filling processing and the physical property data used for the initial tire model is modified corresponding to a predetermined measure of elapsed time, to thereby deform the initial tire model and a tire profile shape after a change with time is predicted by using the deformed initial tire model. By preparing the tire model (30) with the predicted tire profile shape and applying the inner pressure filling processing and road contact processing thereto, the maximum principal strains in the elements of the tire model (30) are calculated, and the margins of safety of the tire component members are calculated by using the maximum principal strains. The tentatively selection is repeated until the calculated margins are equal to or larger than a pre-set reference margin of safety so that a tire with excellent durability can be designed.
摘要:
A heavy-duty radial tire having a belt layer comprising at least four metallic cord layers of first, second, third, and fourth belts in that order from the carcass layer towards the tread. The first belt has a cord angle of 40.degree. to 75.degree. relative to the circumferential direction of the tire and is split into left and right portions provided on left and right shoulder portions, respectively, so as to provide a space in the central region of a crown portion provided with either at least one organic fiber cord layer having a total tensile strength per unit width of at least 240 kgf/cm and a cord angle of 0.degree. to 10.degree. or an inextensible fiber cord layer having a two-layer structure wherein the sum of the tensile moduli per unit width in the initial tension of all the cords is at least 1.3.times.10.sup.3 kgf/cm, the cord angle is larger than 0.degree. and two layers in the two-layer structure cross each other at an absolute angle smaller than the cord angle of the second and third belts. The second belt comprises cords provided at a cord angle of 22.degree. to 30.degree.. The third belt comprises cords crossing the cords constituting the second belt and provided at a cord angle of 10.degree. to 16.degree.. The fourth belt comprises cords provided at a cord angle of at least 18.degree..
摘要:
A pneumatic radial passenger-car tire comprising a carbon fiber cord layer disposed between a carcass layer on the side of an inner liner and a bead filler all along the circumference of the tire, and having a height thereof between a bead heel and the top end thereof equal to or larger than the height of the bead filler between the bead heel and the top end thereof.
摘要:
A heavy duty pneumatic radial tire,wherein a main area of contact with the road provided on a tread surface is formed with a circular arc, having a large radius of curvature, which crosses another circular arc having a small radius of curvature, Ra, to form an edge-shaped boundary, said radius of curvature, Ra, being larger than the depth of main grooves provided in said main area of contact with the road and smaller than the value five times as much as the depth of said main grooves,wherein narrow grooves provided on the shoulder portions are linearly provided in the circumferential direction of the tire and at a distance of 1.5 to 5 mm away towards the center of the tread surface from said edge-shaped boundary and have a groove width in the range of 1.5 to 5 mm, the direction of said narrow groove being inclined at an angle in the range of 1.degree. to 5.degree. relative to the perpendicular to the rotating shaft of the tire, the bottoms of said narrow grooves and the bottoms of said main grooves being present on an imaginary line drawn parallel to the circular arc of said main area of contact with the road, andwherein the widths of the partitioned ribs, located on the side of the center of the tread surface, among the partitioned ribs formed by partition with said narrow grooves, are equal to or larger than the maximum width of the remaining ribs which are present near the center of the tread surface as compared with said partitioned ribs.
摘要:
This pneumatic tire is of the type in which two belt-reinforcing layers crossing each other and at an angle of 15.degree. to 30.degree. with respect to the circumferential direction of the tire are laid over each other and over a carcass cord layer of a tread portion. The improvement lies in that the carcass cord layer consists of upper and lower layers; the lower carcass cord layer continues in its widthways direction so that each of its edges is turned up around one of a pair of right and left bead wires, respectively; the upper carcass cord layer has a split structure so that it is separated to the right and left at the tread portion; the edge portions of the upper carcass cord layer nearer the tread portion overlaps the belt-reinforcing layer to a width of at least 10 mm while the edge portions thereof nearer the bead portions are at a height of not more than 0.3 of the cross-sectional height of the tire measured from bead toe portions, and are separated from the bead wires; and the reinforcing cords of the upper and lower carcass cord layers are arranged so that the mean value 1/2(.alpha..sub.2 +.alpha..sub.1) of the angle .alpha..sub.2 of the reinforcing cords of the upper carcass cord layer and the angle .alpha..sub.1 of the reinforcing cords of the lower carcass cord layer is between 95.degree. to 120.degree., and the difference (.alpha..sub.2 -.alpha..sub.1) is between 10.degree. to 60.degree., measured from the side on which the angle of the reinforcing cords of the belt reinforcing layer adjacent to the upper carcass cord layer is an acute angle with respect to the circumferential direction of the tire.
摘要:
In a method of computing the overall material constant of a composite material, a virtual composite material is defined as the one that a first material component is dispersed in a form of inner spherical particles in a matrix phase and each of the inner spherical particles is enveloped by the second material component, in a form of outer shell layers, as a coating layer. Based on this, a nonlinear equation is prepared, which has the material constant of the virtual composite material as an unknown. Next, the material constant of the virtual composite material is computed by solving the equation. In the equation, the material constant in each of the surrounding areas of the outer shell layers coating the inner spherical particles is defined as the overall material constant of the virtual composite material to be computed. The volume fractions of the material components in the composite material are computed using the equation.
摘要:
A method for tire parameter derivation, tire cornering characteristic calculation and tire design is used with a tire dynamic model constituted by using a plurality of tire dynamic element parameters including stiffness and friction coefficient and parameter defining a distribution of contact pressure of the tire. The parameters and tire cornering characteristic are derived by using the combined sum of squared residuals being obtained by weighted addition of a first sum of squared residuals of lateral force and a second sum of squared residuals of self-aligning torque. The tire dynamic model is a model for calculating a lateral force and for calculating a self-aligning torque separately as a lateral force-based torque component generated by the lateral force applied on a contact patch of the tire and a longitudinal force-based torque component generated by a longitudinal force applied on the contact patch of the tire.