Abstract:
A method for combining a first digital image and a second background digital image, both images including pixels having color values, wherein the first digital image includes both a foreground region having foreground color values and a key color region characterized by a key color, as well as a mixed region where the pixel color values are a mixture of the foreground color value and the key color, includes determining a first control signal that indicates the relative proportions of the foreground color value and the key color for pixels in the first digital image; and segmenting the first digital image into a key color region and a non-key color region in which the non-key color region includes pixels in the first digital image that are not in the key color region. The method also includes determining a second control signal that indicates a spatial distance between the pixels in the first digital image and a boundary between the key color region and the non-key color region; and combining the first digital image and the second background digital image in response to the first and second control signals, the key color, and an illuminant color value.
Abstract:
Multi-channel color image signals from a digital camera having multi-channel image sensors are corrected to account for variations in scene illuminant. This is accomplished by determining the scene illuminant and determining an optimum color-correction transformation in response to the scene illuminant which transform minimizes color errors between an original scene and a reproduced image by adjusting three or more parameters.
Abstract:
An error diffusion method suitable for producing an output image from an input image having a set of digitized continuous-tone pixels is disclosed. The method includes the steps of computing an image activity signal; computing a set of activity weights from the image activity signal; computing a filtered input value for a digitized continuous-tone input pixel responsive to the activity weights and computing a filtered output value responsive to the activity weights for each of the possible output levels. The method further includes selecting the output level in response to the filtered input value and the filtered output value for each of the possible output levels according to an error criterion; determining an error signal between the filtered input value and the filtered output value for the selected output level; and weighting the error signal and adjusting the filtered input values for nearby pixels which have not yet been processed.
Abstract:
A method for compressing a first bit digital input representative of first pixel data into a second bit digital output representative of second pixel data, the method comprises the steps of defining a logarithmic function for converting the first bit digital input into the second bit digital output; replacing a portion of the logarithmic function with a polynomial function; and compressing the first bit digital input into the second bit digital output by utilizing the logarithmic and polynomial function.
Abstract:
A method for selecting the level of color inconstancy of an output image produced on a digital color printer having a neutral ink and a plurality of color inks is disclosed. The method includes analyzing the distribution of input colors present in the input digital image to determine a color distribution metric related to the importance of producing output images having a reduced color inconstancy when the output image is viewed under a variety of image illumination spectra; selecting a color transform from a set of available color transforms designed to produce output images having different color inconstancy characteristics in response to the color distribution metric; processing the input digital image using the selected color transform to produce a transformed image having a selected level of color inconstancy; and printing the transformed image on the digital color printer to produce an output image having the selected level of color inconstancy.
Abstract:
A method for automatically identifying persons in digital media assets associated with a database of individual user accounts, comprising: providing access to a database of individual user accounts, wherein the database includes connections between the individual user accounts; receiving a digital media asset associated with a first individual user account; analyzing the received digital media asset to detect an unidentified person; designating collections of digital media assets associated with the first individual user account and other connected individual user accounts; training person identifiers for the previously identified persons by analyzing digital media assets containing the previously identified persons; using a processor to identify the detected unidentified person using the trained person identifiers; and associating metadata providing an indication of the one or more identified persons with the received digital media asset.
Abstract:
A method for modifying an input digital image having one or more color channels, each color channel having an (x,y) array of image pixel values, to form a modified digital image so that when the modified digital image is used to produce a printed image on an inkjet printer there are reduced ink bleed artifacts.
Abstract:
A method for reducing banding artifacts for bi-directional multi-pass printing on an inkjet printer utilizing a printhead with a plurality of ink nozzles includes defining different print masks to be used for leftward and rightward printing passes such that both the order of ink laydown and the timing between ink laydown on different passes are each substantially constant for a given horizontal position within the image, independent of the vertical position within the image; and printing an input image on the inkjet printer with the defined print masks using a bi-directional multi-pass print mode.
Abstract:
A method for multi-toning an input digital image having input pixels with two or more color channels to form an output digital image having modified output levels. The method includes producing shifted error signals for each color channel, weighting the shifted error signals to determine weighted error signals for nearby pixels that have yet to be processed; producing shifted weighted error signals; and adjusting the input levels for the nearby pixels responsive to the shifted weighted error signals.
Abstract:
A method is described for applying an image enhancement algorithm to input digital images represented in different input color spaces including identifying the input color space of an input digital image, and applying a color space transformation to the input digital image represented in the input color space to form a corresponding input digital image in a reference color space. The method also includes adjusting one or more algorithm parameters of the image enhancement algorithm in response to the identified input color space, and applying the image enhancement algorithm with the one or more adjusted algorithm parameters to the corresponding input digital image in the reference color space to produce an enhanced digital image in the reference color space.