Abstract:
In various embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. Myriad features enable and/or facilitate processing of such digital images using a mobile device that would otherwise be technically impossible or impractical, and furthermore address unique challenges presented by images captured using a camera rather than a traditional flat-bed scanner, paper-feed scanner or multifunction peripheral.
Abstract:
In various embodiments, methods, systems, and computer program products for capturing and processing digital images captured by a mobile device are disclosed. The claimed algorithms are specifically configured to perform and facilitate loan application processing by capturing an image of a document using a mobile device, and analyzing the image (optionally in conjunction with additional data that may also be captured, determined, or otherwise provided to the loan application process) to determine loan-relevant information. Select loan-relevant information may be extracted, compiled, and/or analyzed to facilitate processing of the loan application. Feedback may be provided to facilitate facile application processing, e.g. by ensuring all requisite information is submitted with the loan application. Image capture and document detection are preferably performed using the mobile device, while all other functions may be performed using the mobile device, a remote server, or some combination thereof.
Abstract:
Computerized techniques for improved binarization and extraction of information from digital image data are disclosed in accordance with various embodiments. The inventive concepts include rendering a digital image using a plurality of binarization thresholds to generate a plurality of binarized digital images, wherein at least some of the binarized digital images are generated using one or more binarization thresholds that are determined based on a priori knowledge regarding an object depicted in the digital image; identifying one or more connected components within the plurality of binarized digital images; and identifying one or more text regions within the digital image based on some or all of the connected components. Systems and computer program products are also disclosed.
Abstract:
In several embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. The techniques include detecting medical documents and/or documents relevant to an insurance claim by defining candidate edge points based on the captured image data and defining four sides of a tetragon based on at least some of the candidate edge points. In the case of an insurance claim process, the techniques also include determining whether the document is relevant to an insurance claim; and in response to determining the document is relevant to the insurance claim, submitting the image data, information extracted from the image data, or both to a remote server for claims processing. The image capture and processing techniques further facilitate processing of medical documents and/or insurance claims with a plurality of additional features that may be used individually or in combination in various embodiments.
Abstract:
In various embodiments, computer program products for detecting, estimating, calculating, etc. characteristics of a document based on reference objects depicted on the document are disclosed. In one approach, a computer program product for processing a digital image depicting a document includes instructions executable by a computer for analyzing the digital image to determine one or more of a presence and a location of one or more reference objects; determining one or more geometric characteristics of at least one of the reference objects; defining one or more region(s) of interest based at least in part on one or more of the determined geometric characteristics; and detecting a presence or absence of an edge of the document within each defined region of interest. Additional embodiments leverage the type of document depicted in the image, multiple frames of image data, and/or calculate or extrapolate document edges rather than locating edges in the image.
Abstract:
In several embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. The techniques include detecting medical documents and/or documents relevant to an insurance claim by defining candidate edge points based on the captured image data and defining four sides of a tetragon based on at least some of the candidate edge points. In the case of an insurance claim process, the techniques also include determining whether the document is relevant to an insurance claim; and in response to determining the document is relevant to the insurance claim, submitting the image data, information extracted from the image data, or both to a remote server for claims processing. The image capture and processing techniques further facilitate processing of medical documents and/or insurance claims with a plurality of additional features that may be used individually or in combination in various embodiments.
Abstract:
Techniques for improved binarization and extraction of information from digital image data are disclosed in accordance with various embodiments. The inventive concepts include independently binarizing portions of the image data on the basis of individual features, e.g. per connected component, and using multiple different binarization thresholds to obtain the best possible binarization result for each portion of the image data independently binarized. Determining the quality of each binarization result may be based on attempted recognition and/or extraction of information therefrom. Independently binarized portions may be assembled into a contiguous result. In one embodiment, a method includes: identifying a region of interest within a digital image; generating a plurality of binarized images based on the region of interest using different binarization thresholds; and extracting data from some or all of the plurality of binarized images. Corresponding systems and computer program products are also disclosed.
Abstract:
In one embodiment, a method includes receiving a digital image captured by a mobile device; and using a processor of the mobile device: generating a first representation of the digital image, the first representation being characterized by a reduced resolution; generating a first feature vector based on the first representation; comparing the first feature vector to a plurality of reference feature matrices; classifying an object depicted in the digital image as a member of a particular object class based at least in part on the comparing; and determining one or more object features of the object based at least in part on the particular object class. Corresponding systems and computer program products are also disclosed.
Abstract:
In various embodiments, methods, systems, and computer program products for detecting, estimating, calculating, etc. characteristics of a document based on reference objects depicted on the document are disclosed. In one approach, a computer-implemented method for processing a digital image depicting a document includes analyzing the digital image to determine one or more of a presence and a location of one or more reference objects; determining one or more geometric characteristics of at least one of the reference objects; defining one or more region(s) of interest based at least in part on one or more of the determined geometric characteristics; and detecting a presence or an absence of an edge of the document within each defined region of interest. Additional embodiments leverage the type of document depicted in the image, multiple frames of image data, and/or calculate or extrapolate document edges rather than locating edges in the image.
Abstract:
An efficient method and system to enhance digital acquisition devices for analog data is presented. The enhancements offered by the method and system are available to the user in local as well as in remote deployments yielding efficiency gains for a large variety of business processes. The quality enhancements of the acquired digital data are achieved efficiently by employing virtual reacquisition. The method of virtual reacquisition renders unnecessary the physical reacquisition of the analog data in case the digital data obtained by the acquisition device are of insufficient quality. The method and system allows multiple users to access the same acquisition device for analog data. In some embodiments, one or more users can virtually reacquire data provided by multiple analog or digital sources. The acquired raw data can be processed by each user according to his personal preferences and/or requirements. The preferred processing settings and attributes are determined interactively in real time as well as non real time, automatically and a combination thereof.