Abstract:
The present invention provides a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent, containing 0.01% to 30% by weight of a 1,2-cyclohexanediol derivative having a specific structure; and a lithium secondary battery using the nonaqueous electrolytic solution. The lithium secondary battery exhibits excellent battery characteristics such as electrical capacity, cycle property, and storage property and can maintain excellent long-term battery performance.
Abstract:
A nonaqueous electrolyte secondary battery comprising a negative electrode constituted of a carbonaceous material permitting reversible insertion and desorption of lithium, a positive electrode permitting reversible insertion and desorption of lithium, a separator separating these positive electrode and negative electrode from each other and a nonaqueous electrolyte composed of an organic solvent and, dissolved therein, a solute of lithium salt, wherein the nonaqueous electrolyte contains vinylene carbonate and di(2-propynyl) oxalate, these vinylene carbonate and di(2-propynyl) oxalate added in an amount of 0.1 to 3.0% by mass and 0.1 to 2.0% by mass, respectively, based on the mass of the nonaqueous electrolyte. Thus, there can be provided a nonaqueous electrolyte secondary battery wherein a stable SEI surface coating is formed to thereby exhibit a large initial capacity and excel in cycle characteristics at high temperature and wherein any cell swelling is slight.
Abstract:
The present invention provides an excellent nonaqueous electrolytic solution capable of improving low-temperature and high-temperature cycle properties and load characteristics after high-temperature charging storage, an electrochemical element using it, and an alkynyl compound used for it.The nonaqueous electrolytic solution of the present invention comprises containing at least one alkynyl compound represented by the following general formula (I) in an amount of from 0.01 to 10% by mass in the nonaqueous electrolytic solution. R1(O)n—X1—R2 (I) (In the formula, X1 represents a group —C(═O)—, a group —C(═O)—C(═O)—, a group —S(═O)2—, a group —P(═O) (—R3)—, or a group —X3—S(═O)2O—. R1 represents an alkenyl group, a formyl group, an alkyl group, an acyl group, an arylcarbonyl, an alkanesulfonyl group, an alkynyloxysulfonyl group, an arylsulfonyl group, a dialkylphosphoryl group, an alkyl(alkoxy)phosphoryl group, or a dialkoxyphosphoryl group; R2 represents an alkynyl group or an alkynyloxy group; R3 represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an alkenyloxy group, an alkynyloxy group, or an aryloxy group; n indicates 0 or 1.
Abstract:
Disclosed are a nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, which contains a sulfonate compound having a specific structure in an amount of from 0.01 to 10% by mass of the nonaqueous electrolytic solution, and an electrochemical device containing the nonaqueous electrolytic solution. The nonaqueous electrolytic solution is excellent in the effect of improving the storage property of primary batteries and improving the cycle property of secondary batteries in use thereof at high temperatures and the low-temperature property thereof after high-temperature cycles.
Abstract:
A nonaqueous electrolyte secondary battery including a negative electrode containing a graphite material as the negative active material, a positive electrode containing lithium cobalt oxide as a main component of the positive active material and a nonaqueous electrolyte solution, the battery being characterized in that the lithium cobalt oxide contains a group IVA element selected from the group consisting of Ti, Zr and Hf and a group IIA element of the periodic table, the nonaqueous electrolyte solution contains 0.2-1.5% by weight of a sulfonyl-containing compound and preferably further contains 0.5-4% by weight of vinylene carbonate.
Abstract:
The present invention provides a nonaqueous electrolytic solution which can improve the electrochemical characteristics in a broad temperature range, an electrochemical element produced by using the same and a sulfonic ester compound having a branched structure which is used for the same.The present invention relates to a nonaqueous electrolytic solution prepared by dissolving an electrolyte salt in a nonaqueous solvent, which comprises a sulfonic ester compound represented by the following Formula (I) in an amount of 0.001 to 5% by mass of the nonaqueous electrolytic solution: (wherein R represents an alkyl group or an aryl group; A represents a >CH group or a >SiZ group (Z represents an alkyl group or an aryl group); X represents an alkyl group, a cycloalkyl group or an aryl group; Y represents a cycloalkyl group, a -L1CHRaOSO2Rb group or a —Si(Rc)(Rd)OSO2Rb group; W represents 1 or 2; Ra represents an alkyl group; Rb, Rc and Rd represent an alkyl group or an aryl group; L1 represents an alkylene group in which at least one hydrogen atom may be substituted with —OSO2Re (Re has the same meaning as that of R), a divalent linkage group containing at least one ether bond or a single bond).
Abstract:
The invention provides a lithium secondary battery which is excellent in long-term cycle property and in battery characteristics, such as electric capacity and storage property, and a nonaqueous electrolytic solution usable for such a lithium secondary battery. The present invention relates to a lithium secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolytic solution containing an electrolyte salt dissolved in a nonaqueous solvent, characterized in that the positive electrode is made of a material including a lithium compound oxide, in that the negative electrode is made of a material including graphite, and in that the nonaqueous electrolytic solution contains dialkyl oxalate and further contains vinylene carbonate and/or 1,3-propanesultone, and a nonaqueous electrolytic solution for use in such a battery.
Abstract:
The present invention provides a nonaqueous electrolytic solution exhibiting excellent electrical capacity, long-term cycle property, and storage property in a charged state; and a lithium secondary battery using the nonaqueous electrolytic solution.The nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent, comprises 0.001% to 5% by weight of a tin compound represented by the following general formula (I) and/or (II), on the basis of the weight of the nonaqueous electrolytic solution: R1R2R3Sn-MR4R5R6 (I) where R1 to R3 each represent a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or an aryloxy group; R4 to R6 each represent a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group; M represents Si or Ge; and SnX2 (II) where X represents β-diketonate.
Abstract:
A non-aqueous electrolytic solution containing a ketone compound having the formula (I): in which each of R1 and R2 is linear or branched alkyl; and each of R3, R4, R5 and R6 is hydrogen or linear or branched alkyl; however, R1 and R4 can be combined to form a cycloalkanone ring in conjunction with a propanone skeleton to which R1 and R4 are connected, and two or more of alkyl of R2, alkyl of R5, a branched chain of alkyl of R1, and a branched chain of alkyl of R4 can be combined to form a cycloalkane ring, or alkyl of R1 and alkyl of R2 and/or alkyl of R4 and alkyl of R5 can be combined to each other to form a cycloalkane ring, is favorably employed for manufacturing a lithium secondary battery that is excellent in the battery performances and cycle performance.
Abstract:
A nonaqueous electrolytic solution for a lithium secondary battery, in which 0.01 to 10 wt. % of a sulfur-containing acid ester and 0.01 to 10 wt. % of a triple bond-containing compound are dissolved in a nonaqueous solvent, and a lithium secondary battery employing the nonaqueous electrolytic solution.