Abstract:
A method for transmitting/receiving an additional control signal without any loss of bandwidth and power in an original Tx signal is disclosed. If the additional control signal is transmitted via the Tx signal composed of at least one of data and control signals, at least one of the amplitude and phase of the Tx signal of the time- and frequency-resource domain is modulated according to the additional control signal to be transmitted. The modulated Tx signal is transmitted to the receiver, so that the additional control signal can be transmitted irrespective of the original Tx signal. According to a modulation status of at least one of an amplitude and a phase of the Rx signal contained in the time- and frequency-resource domain, the additional control signal can be acquired.
Abstract:
A method for transmitting ACK/NACK (Acknowledge/Negative ACK) information for two or more carriers at a user equipment in a wireless communication system which supports carrier aggregation. The method according to one embodiment includes generating an ACK/NACK payload including two or more ACK/NACK sets, wherein each ACK/NACK set is associated with a corresponding carrier and have one or more ACK/NACK bits; and transmitting the ACK/NACK payload through a PUCCH (Physical Uplink Control Channel) or PUSCH (Physical Uplink Shared Channel). A size of the ACK/NACK payload is given based on carrier configuration, the carrier configuration including a number of configured carriers and transmission modes for the configured carriers. The two or more ACK/NACK sets are concatenated in an order of carrier index.
Abstract:
A method for transmitting, by a base station, signals in a communication system. Control information for a subsidiary carrier band is transmitted to a mobile station via a primary carrier band. Data is transmitted to the mobile station via the subsidiary carrier band based on the control information and via the primary carrier band. Furthermore, the primary carrier band is a carrier frequency band which the mobile station initially attempts to access or via which information of a carrier aggregation configuration is transmitted. Additionally, the control information includes a logical index assigned to the subsidiary carrier band for the mobile station and a physical index of a frequency allocation band used as the subsidiary carrier band. The physical index corresponds to one of plural absolute frequency band indexes assigned to frequency allocation bands available in the communication system.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
A method of allocating control information in a wireless communication system is provided. The method includes: allocating essential control information of a first system to a first sub-frame in a frame including a plurality of sub-frames each of which comprises a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and allocating essential control information of a second system to an nth sub-frame in a fixed position from the first sub-frame (where n is an integer satisfying n>1). Accordingly, in a frame supporting heterogeneous systems, essential control information can be fixedly allocated to a specific position while maintaining the number of system switching points, at which switching occurs between the systems, to one even if a radio resource allocation amount changes between the systems, and thus the essential control information that must be received by all user equipments can be effectively provided without the increase of overhead.
Abstract:
Present document is related with communication of synchronization signals between base station and terminal. The base station acquires a primary synchronization signal generated using a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence having a root index M and having a length L, and a secondary synchronization signal informing a cell group ID. And, the base station transmits the primary synchronization signal at a last symbol of a specific time domain unit to one or more terminals, and the secondary synchronization signal at a second-to-last symbol of the specific time domain unit to the one or more terminals. Here, the root index M is one among a root index set comprising m0 and m1 meeting “m0+m1=(½*L)*n” or “m0−m1=±(½*L)*n”, where ‘n’ is an integer greater than 0.
Abstract:
A method and device for transmitting uplink control signals in a wireless communication system, the method including: reserving a preassigned scheduling request (SR) physical uplink control channel (PUCCH) resource used for transmission of a SR; determining a frequency domain sequence and an orthogonal sequence based on the preassigned SR PUCCH resource; spreading an ACK/NACK for Hybrid Automatic Repeat Request (HARQ) with the frequency domain sequence and the orthogonal sequence to generate a mapped sequence; and transmitting the mapped sequence.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
Provided is a method for transmitting control information through an uplink by a terminal of a wireless communication system. The terminal generates a first bit stream for first control information and a second bit stream for second control information, determines the transmission power of the first bit stream and the second bit stream on the basis of the weight of the first control information with respect to the second control information, generates the multiplexed bit stream by multiplexing the first bit stream and the second bit stream, and transmits the multiplexed bit stream to a base station on the basis of the transmission power.
Abstract:
A symbol mapping method for repetition coding is disclosed. The symbol mapping method comprises performing repetition coding on codeword to output repeated codeword symbols, and mapping the repeated codeword symbols with subcarriers located in different localized resource blocks. According to the embodiments of the present invention, it is possible to obtain maximum reliability in a receiving side by mapping codeword bits with subcarriers to reduce the number of bits having low reliability when a transmitting side uses repetition coding. Also, it is possible to improve decoding throughput and obtain channel diversity.