-
公开(公告)号:US20170299721A1
公开(公告)日:2017-10-19
申请号:US15470735
申请日:2017-03-27
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a light source to emit a pulse of light into a field of view and a receiver to detect a return pulse of light which is reflected or scattered by a target in the field of view. The receiver may include an avalanche photodiode to generate an electrical-current pulse corresponding to the return pulse and a transimpedance amplifier to produce a voltage pulse that corresponds to the electrical-current pulse. A voltage amplifier may amplify the voltage pulse and a comparator may produce an edge signal when the amplified voltage pulse exceeds a threshold. A time-to-digital converter may determine a time interval based on an emission time of the pulse of light and based on the edge signal. A processor may determine a distance to the target using the time interval.
-
公开(公告)号:US20170131387A1
公开(公告)日:2017-05-11
申请号:US15342595
申请日:2016-11-03
Applicant: Luminar Technologies, Inc.
Inventor: Scott R. Campbell , Jason M. Eichenholz , Lane A. Martin , Matthew D. Weed
CPC classification number: G01S7/4817 , G01S7/4812 , G01S7/4816 , G01S17/10 , G01S17/42 , G01S17/89
Abstract: A lidar system may have a light source configured to emit a pulse of light and a scanner that scans a field of view of the light source in a forward-scanning direction across a plurality of pixels located downrange from the lidar system. The scanner can direct the pulse of light toward the second pixel and scan a field of view of a first detector. The first-detector field of view can be offset from the light-source field of view in a direction opposite the forward-scanning direction. When the pulse is emitted, the first-detector field of view can at least partially overlap the first pixel and the light-source field of view can at least partially overlap the second pixel. The first detector can be configured to detect a portion of the pulse of light scattered by a target located at least partially within the second pixel.
-
公开(公告)号:US11933895B2
公开(公告)日:2024-03-19
申请号:US18101824
申请日:2023-01-26
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Scott R. Campbell , John E. McWhirter , Matthew D. Weed , Lane A. Martin
IPC: G02B26/08 , G01S7/481 , G01S17/08 , G01S17/42 , G01S17/931 , G02B5/09 , G02B7/182 , G02B26/10 , G02B26/12 , G02B27/09 , G02B27/10 , G02B27/30 , H01L25/16 , H01L27/146 , G01S17/87 , G02B5/08 , G02B5/18 , G02B5/22
CPC classification number: G01S17/08 , G01S7/4813 , G01S7/4817 , G01S17/42 , G01S17/931 , G02B5/09 , G02B7/1821 , G02B26/101 , G02B26/105 , G02B26/123 , G02B26/125 , G02B27/0955 , G02B27/0977 , G02B27/1086 , G02B27/30 , H01L25/167 , H01L27/14643 , H01L27/14647 , G01S17/87 , G02B5/0841 , G02B5/1857 , G02B5/22 , H01L27/14694
Abstract: A lidar system includes one or more light sources configured to generate a first beam of light and a second beam of light, a scanner configured to scan the first and second beams of light across a field of regard of the lidar system, and a receiver configured to detect the first beam of light and the second beam of light scattered by one or more remote targets. The scanner includes a rotatable polygon mirror that includes multiple reflective surfaces angularly offset from one another along a periphery of the polygon mirror, the reflective surfaces configured to reflect the first and second beams of light to produce a series of scan lines as the polygon mirror rotates. The scanner also includes a pivotable scan mirror configured to (i) reflect the first and second beams of light and (ii) pivot to distribute the scan lines across the field of regard.
-
公开(公告)号:US10557940B2
公开(公告)日:2020-02-11
申请号:US15364085
申请日:2016-11-29
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin , Stephen D. Gaalema
IPC: G01C3/08 , G01S17/10 , G01S17/42 , G01S17/93 , G01S7/481 , G01S7/484 , G01S17/08 , H01S3/067 , H01S3/08 , H01S3/094 , H01S3/0941 , H01S3/10 , H01S3/11 , H01S5/40 , G01S7/48 , G01S7/483 , G01S17/02 , H01S3/00 , G01S17/00 , G01S17/06 , G01S17/88 , G01S7/487 , H01S3/16 , G01S17/32
Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light across a field of regard. The lidar system also includes a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system.
-
公开(公告)号:US20190235052A1
公开(公告)日:2019-08-01
申请号:US16378315
申请日:2019-04-08
Applicant: Luminar Technologies, Inc.
Inventor: Joseph G. LaChapelle , Matthew D. Weed , Scott R. Campbell , Jason M. Eichenholz , Austin K. Russell , Lane A. Martin
CPC classification number: G01S7/484 , G01S7/003 , G01S7/4868 , G01S7/497 , G01S17/10 , G01S17/42 , G01S17/936 , G01S17/95 , G01S2007/4975 , G01W1/02 , G01W1/14 , Y02A90/19
Abstract: In one embodiment, a method for dynamically varying receiver characteristics in a lidar system includes emitting light pulses by a light source in a lidar system. The method further includes detecting, by a receiver in the lidar system, light from one of the light pulses scattered by one or more remote targets to identify a return light pulse. The method also includes determining an atmospheric condition at or near a geolocation of a vehicle that includes the lidar system. The method further includes providing a control signal to the receiver adjusting one or more characteristics of the receiver to compensate for attenuation or distortion of the return light pulses associated with the atmospheric condition.
-
公开(公告)号:US10340653B2
公开(公告)日:2019-07-02
申请号:US15901838
申请日:2018-02-21
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: David Welford , Martin A. Jaspan , Jason M. Eichenholz , Scott R. Campbell , Lane A. Martin , Matthew D. Weed
IPC: G01S17/88 , H01S3/11 , G01S17/10 , H01S3/094 , H01S3/30 , G01S7/481 , H01S3/102 , H01S3/0941 , H01S3/06 , H01S3/113 , H01S3/08 , H01S3/16 , H01S3/00
Abstract: A lidar system can include a solid-state laser to emit pulses of light. The solid-state laser can include a Q-switched laser having a gain medium and a Q-switch. The lidar system can also include a scanner configured to scan the emitted pulses of light across a field of regard and a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system. The lidar system can also include a processor configured to determine the distance from the lidar system to the target based at least in part on a round-trip time of flight for an emitted pulse of light to travel from the lidar system to the target and back to the lidar system.
-
公开(公告)号:US10267898B2
公开(公告)日:2019-04-23
申请号:US15871687
申请日:2018-01-15
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Scott R. Campbell , Rodger W. Cleye , Jason M. Eichenholz , Lane A. Martin , Matthew D. Weed
Abstract: A lidar system is disclosed. The lidar system can include a light source to produce first and second sets of pulses of light. The system can also include a first lidar sensor with a first scanner to scan the first set of pulses of light along a first scan pattern, and a first receiver to detect scattered light from the first set of pulses of light. The system can also include a second lidar sensor with a second scanner to scan the second set of pulses of light along a second scan pattern, and a second receiver to detect scattered light from the second set of pulses of light. The first scan pattern and the second scan pattern can be at least partially overlapped in an overlap region. The lidar system can also include an enclosure to contain the light source, the first lidar sensor, and the second lidar sensor.
-
公开(公告)号:US20190107623A1
公开(公告)日:2019-04-11
申请号:US16155243
申请日:2018-10-09
Applicant: Luminar Technologies, Inc.
Inventor: Scott R. Campbell , Matthew D. Weed , Lane A. Martin , Jason M. Eichenholz , Austin K. Russell
Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light along a scan pattern contained within an adjustable field of regard. The scanner includes a first scanning mirror configured to scan the portion of the emitted pulses of light substantially parallel to a first scan axis to produce multiple scan lines of the scan pattern, where each scan line is oriented substantially parallel to the first scan axis. The scanner also includes a second scanning mirror configured to distribute the scan lines along a second scan axis that is substantially orthogonal to the first scan axis, where the scan lines are distributed within the adjustable field of regard according to an adjustable second-axis scan profile.
-
公开(公告)号:US20180284286A1
公开(公告)日:2018-10-04
申请号:US15943467
申请日:2018-04-02
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Jason M. Eichenholz , Scott R. Campbell , Matthew D. Weed , Lane A. Martin
Abstract: A lidar system operating in a vehicle comprising a first eye configured to scan a first field of regard and a second eye configured to scan a second field of regard. Each of the first eye and the second eye includes a respective optical element configured to output a beam of light, a respective scan mirror configured to scan the beam of light along a vertical dimension of the respective field of regard, and a respective receiver configured to detect scattered light from the beam of light. The field of regard of the lidar system includes the first field of regard and the second field of regard, combined along a horizontal dimension of the first field of regard and the second field of regard.
-
公开(公告)号:US20180284278A1
公开(公告)日:2018-10-04
申请号:US15845552
申请日:2017-12-18
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Austin K. Russell , Matthew D. Weed , Liam J. McGregor , Lane A. Martin , Jason M. Eichenholz
IPC: G01S17/10
CPC classification number: G01S17/102 , G01S7/4816 , G01S7/4817 , G01S7/483 , G01S7/4865 , G01S7/497 , G01S17/10 , G01S17/42 , G01S17/87 , G01S17/89 , G01S17/936
Abstract: To increase the effective pulse rate of a light source in a lidar system, a controller provides control signals to the light source to transmit a light pulse once the previous light pulse has been received. The controller may communicate with a receiver in the lidar system that detects received light signals. In response to detecting a received light signal, the receiver may provide an indication of the received light signal to the controller which may in turn provide a control signal to the light source to transmit the next light pulse. The receiver may also provide characteristics of the received light signal to the controller, such as the peak power for the received light signal, the average power for the received light signal, the pulse duration of the received light signal, etc. Then the controller may analyze the characteristics to determine whether to transmit another light pulse.
-
-
-
-
-
-
-
-
-