Abstract:
Methods, apparatuses, and systems related to conductive structures are described. An example conductive structure includes a first conductive material including a conductive metal nitride, where the first conductive material has a thickness of at least 0.5 nanometers, and a second conductive material including a conductive metal, where the second conductive material is disposed on a first surface of the first conductive material.
Abstract:
Some embodiments include apparatuses and methods using the apparatuses. One of the embodiments includes a capacitor, a transistor coupled to the capacitor, the transistor and the capacitor included in a memory cell; the transistor including a channel structure, a gate including a portion located on a side of the channel structure, and a dielectric structure between the channel structure and the gate; and on-die circuitry configured to selectively apply a stress condition to the transistor to tune a threshold voltage of the transistor.
Abstract:
Some embodiments include a transistor having an active region containing semiconductor material. The semiconductor material includes at least one element selected from Group 13 of the periodic table in combination with at least one element selected from Group 16 of the periodic table. The active region has a first region, a third region offset from the first region, and a second region between the first and third regions. A gating structure is operatively adjacent to the second region. A first carrier-concentration-gradient is within the first region, and a second carrier-concentration-gradient is within the third region. Some embodiments include methods of forming integrated assemblies.
Abstract:
Trenches are formed into semiconductive material. Masking material is formed laterally over at least elevationally inner sidewall portions of the trenches. Conductivity modifying impurity is implanted through bases of the trenches into semiconductive material there-below. Such impurity is diffused into the masking material received laterally over the elevationally inner sidewall portions of the trenches and into semiconductive material received between the trenches below a mid-channel portion. An elevationally inner source/drain is formed in the semiconductive material below the mid-channel portion. The inner source/drain portion includes said semiconductive material between the trenches which has the impurity therein. A conductive line is formed laterally over and electrically coupled to at least one of opposing sides of the inner source/drain. A gate is formed elevationally outward of and spaced from the conductive line and laterally adjacent the mid-channel portion. Other embodiments are disclosed.
Abstract:
Trenches are formed into semiconductive material. Masking material is formed laterally over at least elevationally inner sidewall portions of the trenches. Conductivity modifying impurity is implanted through bases of the trenches into semiconductive material there-below. Such impurity is diffused into the masking material received laterally over the elevationally inner sidewall portions of the trenches and into semiconductive material received between the trenches below a mid-channel portion. An elevationally inner source/drain is formed in the semiconductive material below the mid-channel portion. The inner source/drain portion includes said semiconductive material between the trenches which has the impurity therein. A conductive line is formed laterally over and electrically coupled to at least one of opposing sides of the inner source/drain. A gate is formed elevationally outward of and spaced from the conductive line and laterally adjacent the mid-channel portion. Other embodiments are disclosed.