摘要:
In order to effect a reduction and a carburization to form Fe.sub.3 C to the highest possible degree in a relatively short time in an economical process, a treatment in two stages is effected in fluidized beds. The first stage is effected in a circulating fluidized bed system, in which the amount of solids circulated per hour is at least five times the weight of solids contained in the fluidized bed reactor and a major part of the iron content of the charge is pre-reduced. The remaining reduction and the partial or complete conversion to Fe.sub.3 C are effected in the second stage in a conventional fluidized bed. Water is condensed from the exhaust gas from the circulating fluidized bed system and that gas is strengthened by an addition of reducing gases and is reheated to the temperature which is required for the process. A part of the reheated recycle gas is supplied as a fluidizing gas to the conventional fluidized bed and the other part of the recycle gas is supplied as a fluidizing gas to the fluidized bed reactor of the circulating fluidized bed. The exhaust gas from the conventional fluidized bed is supplied as a secondary gas to the fluidized bed reactor of the circulating fluidized bed system.
摘要:
A zinc- and lead-containing residue from a metallurgical plant is reprocessed by a thermal treatment in a circulating fluidized bed system. A major part of the heat demand is satisfied by a combustion of solid carbonaceous material in the fluidized bed reactor of the circulating fluidized bed system. A reducing fluidizing gas, which is virtually free of free oxygen, is fed to the lower part of the fluidized bed reactor. A solid carbon content of from 5 to 30% is adjusted in the fluidized bed in the lower portion of the fluidized bed reactor, which is supplied in its upper portion with oxygen-containing gases and in which CO.sub.2 is formed only at such a rate that zinc metal is not reoxidized. Substantially all solids are removed in a recycling cyclone from the suspension discharged from the reactor and the removed solids are recycled. The gas is cooled to a temperature at which zinc metal is oxidized to ZnO. The dust-like zinc compounds and lead compounds are removed from the gas.
摘要:
In a process of simultaneously producing fuel gas and process heat from carbonaceous materials wherein the carbonaceous materials are gasified in a first fluidized bed stage and the combustible constituents left after the gasification are subsequently burnt in a second fluidized bed stage the throughput rate and the flexibility are increased in that the gasification is carried out at a pressure of up to 5 bars and a temperature of 800.degree. to 1100.degree. C. by a treatment with oxygen-containing gases in the presence of steam in a circulating fluidized bed and 40 to 80% of the carbon contained in the starting material are thus reacted. Sulfur compounds are removed from the resulting gas in a fluidized state at a temperature in the range from 800.degree. to 1000.degree. C. and the gas is then cooled and subjected to dust collection. The gasification residue together with the by-products which have become available in the purification of the gas, such as laden desulfurizing agent, dust and aqueous condensate, are fed to another circulating fluidized bed and the remaining combustible constituents are burnt there with an oxygen excess of 5 to 40%.
摘要:
The present invention relates to a method for the conveyance of fine-grained solids in a fluidized bed reactor and also to a corresponding plant. It is proposed to introduce a first gas or gas mixture from below through a central tube (3) into a mixing chamber (7) of the reactor (1), the central tube (3) being at least partly surrounded by a stationary annular fluidized bed (10) which is fluidized by supplying fluidizing gas. The gas velocities of the first gas or gas mixture as well as of the fluidizing gas for the annular fluidized bed (10) are adjusted such that the particle Froude numbers in the central tube (3) are between 1 and 100, in the annular fluidizied bed (10) between 0.02 and 2 in the mixing chamber (7) between 0.3 and 30.
摘要:
A plant for the heat treatment of solids containing titanium includes a fluidized bed reactor. The reactor includes at least one gas supply tube being at least partly surrounded by an annular chamber in which a stationary annular fluidized bed is located, and a mixing chamber being located above the upper orifice region of the gas supply tube. The gas flowing through the gas supply tube entrains solids from the stationary annular fluidized bed into the mixing chamber when passing through the upper orifice region of the gas supply system. The plant further includes a solids separator downstream of the reactor. The solids separator includes a solids conduit leading to the annular fluidized bed of the reactor.
摘要:
A plant for the heat treatment of solids containing iron oxide. The plant includes a reactor including a fluidized bed reactor. The reactor includes a gas supply system disposed in the reactor, a stationary annular fluidized bed which at least partly surrounds the gas supply system, and a mixing chamber. The gas supply system is configured so that gas flowing through the gas supply system entrains solids from the stationary annular fluidized bed into the mixing chamber.
摘要:
The present invention relates to a method and a plant for the heat treatment of solids containing iron oxide, in which fine-grained solids are heated to a temperature of 700 to 1150° C. in a fluidized bed reactor (8). To improve the utilization of energy, it is proposed to introduce a first gas or gas mixture from below through at least one gas supply tube (9) into a mixing chamber region (15) of the reactor (8), the gas supply tube (9) being at least partly surrounded by a stationary annular fluidized bed (12) which is fluidized by supplying fluidizing gas. The gas velocities of the first gas or gas mixture and of the fluidizing gas for the annular fluidized bed (12) are adjusted such that the Particle-Froude-Numbers in the gas supply tube (9) are between 1 and 100, in the annular fluidized bed (12) between 0.02 and 2, and in the mixing chamber (15) between 0.3 and 30.
摘要:
The present invention relates to a method and a plant for the heat treatment of solids containing iron oxide, in which fine-grained solids are heated to a temperature of 700 to 1150° C. in a fluidized bed reactor (8). To improve the utilization of energy, it is proposed to introduce a first gas or gas mixture from below through at least one gas supply tube (9) into a mixing chamber region (15) of the reactor (8), the gas supply tube (9) being at least partly surrounded by a stationary annular fluidized bed (12) which is fluidized by supplying fluidizing gas. The gas velocities of the first gas or gas mixture and of the fluidizing gas for the annular fluidized bed (12) are adjusted such that the Particle-Froude-Numbers in the gas supply tube (9) are between 1 and 100, in the annular fluidized bed (12) between 0.02 and 2, and in the mixing chamber (15) between 0.3 and 30.
摘要:
Process for producing Iron carbide wherein, in a first stage, Iron ore is reduced to sponge iron using a reducing gas containing at least 90% hydrogen, on a nitrogen-free basis, to produce a sponge iron having a carbon content of less than 1% wt.; then in a second stage the sponge iron is fluidized at a temperature of 500 to 800° C. with a methane-containing fluidizing gas in a fluidized bed reactor wherein the water content of the gas in the reactor is not more than 1.5% wt., to produce a product wherein at least 85% of the iron content is in the form of Fe3C.
摘要:
A sinterable mixture comprising iron-containing materials and solid fuel is sintered on a sintering machine; to decrease the rate at which exhaust gas is to be removed and to produce a desirable sinter, a part of the exhaust gas is enriched to an oxygen content of up to 24% by the addition of higher-oxygen gases and is then recirculated as a recycle gas, and exhaust gas is removed as a tail gas from the process only at a rate which corresponds to the rate of the gas which is formed during the sintering process plus the rate of the gas added for enriching plus the rate of inleaked air which has infiltrated from the outside minus the rate of oxygen consumption.