Abstract:
A method is described for enriching procaryotic DNA, said method including the steps of contacting at least one procaryotic DNA with at least one protein or polypeptide which is capable of specifically binding to non-methylated CpG motifs, and separating the protein/polypeptide-DNA complex. Moreover, the application relates to a kit for carrying out said method.
Abstract:
A method is described for enriching procaryotic DNA, said method including the steps of contacting at least one procaryotic DNA with at least one protein or polypeptide which is capable of specifically binding to non-methylated CpG motifs, and separating the protein/polypeptide-DNA complex. Moreover, the application relates to a kit for carrying out said method.
Abstract:
The invention relates to a method for separating and/or enriching prokaryotic DNA, comprising the following steps: a) contacting of at least one prokaryotic DNA that is in solution with a protein that bonds specifically to prokaryotic DNA, said protein being 25%-35% homologous with the wild-type CGPB protein, thus forming a protein-DNA complex; and b) separation of the complex. The invention also relates to a kit for carrying out said method.
Abstract:
A sinterable mixture comprising iron-containing materials and solid fuel is sintered on a sintering machine; to decrease the rate at which exhaust gas is to be removed and to produce a desirable sinter, a part of the exhaust gas is enriched to an oxygen content of up to 24% by the addition of higher-oxygen gases and is then recirculated as a recycle gas, and exhaust gas is removed as a tail gas from the process only at a rate which corresponds to the rate of the gas which is formed during the sintering process plus the rate of the gas added for enriching plus the rate of inleaked air which has infiltrated from the outside minus the rate of oxygen consumption.
Abstract:
A process and apparatus are used for purifying dust- and pollutant-containing exhaust gases, which are first subjected in a first stage to a dry purification in a mass separator and are subsequently subjected in a second stage to an electrostatic purification in an electrostatic precipitator. In the second stage the exhaust gases are passed through one or more fields provided with liquid-wetted collecting electrodes, which define gas passages. The electrostatic precipitator also has an overflow trough and a collecting trough for each collecting electrode. Liquid supplied to the overflow trough flows onto the collecting electrode and then is collected in the collecting trough.
Abstract:
The process for cleaning collecting surfaces of dedusting electrostatic precipitators includes the steps of introducing a coarse-grained cleaning dust into the dedusting electrostatic precipitator, collecting at least the cleaning dust electrostatically in the dedusting electrostatic precipitator and periodically removing the cleaning dust so collected from the collecting surfaces to form a collected dust. To provide a more complete cleaning, the cleaning dust is fed into a gas-flowless space above the fields containing the collecting electrodes and the cleaning dust is distributed in the gas-flowless space according to the cleaning requirements. An apparatus for performing the above cleaning process is also described.
Abstract:
A process and an apparatus for the electrostatic purification of dust- and pollutant-containing exhaust gases in multiple-field precipitators are proposed. The exhaust gases are first subjected in a first stage to an electrostatic purification under dry conditions in gas passages defined by platelike collecting electrodes and are subsequently passed in a second stage through one or more fields defined by liquid-wetted collecting electrodes, which define gas passages. The liquid which is supplied in the second stage at the top ends of the collecting electrodes is laterally discharged from the precipitator and the substantially dry dust which is still collected in the second stage is fed to dust-receiving means.
Abstract:
The separation rate of electrostatic precipitators associated with sintering plants is improved in that the exhaust gas is conditioned by means of solid particles. For that purpose, part of the coke breeze as a fuel for the sintering process is branched off, separately ground, supplied to the exhaust gases to be dedusted, collected together with the dust in the electrostatic precipitators and returned to the sintering process.
Abstract:
A package for photoresist material, particularly a dry resist, is substantially impermeable to water vapor, thereby preventing humidity-related effects which adversely influence the processability of the photoresist. The package can comprise a film tubing, the ends of which are closed by welding or gluing, into which a photoresist roll is placed. As the material for the film tubing, a composite material can be used which is formed of a polyester film as the support film, to which an aluminum foil is laminated or which is vacuum-metallized with aluminum and a polyethylene film laminated on top. A tinplate container can also be used as a package, the container being closed by soldering after placing the photoresist material inside the container. These packages generally have a permeability to water vapor of less than 0.01 gram of water vapor per square meter per day, at a humidity gradient of 97% and an ambient temperature of 23.degree. C.
Abstract:
A process is disclosed for cleaning waste gases generated in an at least partially covered movable grate-type sintering line, said sintering line comprising an ignition zone, a sintering zone and a burning zone, wherein waste gases generated in the burning zone are returned to the sintering zone, passed through the sinter charge and at least those waste gases emerging from the last third of the sintering zone are scrubbed after passage through the charge.