Abstract:
A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.
Abstract:
A surgical sutureless valve that is attached to a stent frame for delivery to a location in a patient using percutaneous implantation devices and methods.
Abstract:
A surgical sutureless valve that is attached to a stent frame for delivery to a location in a patient using percutaneous implantation devices and methods.
Abstract:
A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.
Abstract:
A single piece stent construction having a plurality of commissure posts, each of which extends upwardly from a solid ring along a bend line and generally along a central longitudinal axis of the stent.
Abstract:
A stented valve including a stent structure including a generally tubular body portion having a first end, a second end, an interior area, a longitudinal axis, and a plurality of vertical wires extending generally parallel to the longitudinal axis around a periphery of the body portion, wherein the plurality of vertical wires includes multiple commissure wires and at least one structural wire positioned between adjacent commissure wires, and a plurality of V-shaped wire structures having a first end, a second end, and a peak between the first and second ends, wherein a first end of each V-shaped structure extends from a first vertical wire and a second end of each V-shaped structure extends from a second vertical wire that is adjacent to the first vertical wire, wherein each V-shaped structure is oriented so that its peak is facing in the same direction relative to the first and second ends of the body portion, and a valve structure including a plurality of leaflets attached to the stent structure within the tubular body portion.
Abstract:
A stented valve prosthesis for implantation within a native mitral valve having a generally tubular expandable stent structure having a first end, a second end, a central body portion having one or more openings, and a longitudinal axis. A wing portion extends outwardly from the stent structure and away from the longitudinal axis of the stent structure in an expanded deployed configuration. A radius of the wing portion is greater than a radius of the central body portion in the expanded deployed configuration, and the wing portion fits within one of the openings in the central body portion of the stent structure in a crimped delivery configuration. A valve structure having a plurality of leaflets is attached to an interior of the stent structure.
Abstract:
A stented valve having at least one leaflet made of pericardium or other material having a relatively thin profile at the annulus. The leaflets are attached via chords to a stent frame, where the chords are positioned to mimic the native valve anatomy and functionality. In particular, the valves of one exemplary embodiment of the invention are sized to replace a mitral valve and therefore the chords are arranged to prevent prolapse of the leaflets into the atrium. The stented valve has a relatively short height at its annulus due to the positioning of the chords. In addition, the stented valve is capable of being crimped to a small enough size that it can be delivered to the implantation site via transcatheter delivery systems and methods.