Abstract:
Disclosed are methods and apparatus for protecting dielectric films on microelectronic components from contamination associated with singulation, picking and handling of singulated microelectronic components from a wafer for assembly with other components.
Abstract:
Methods for reducing heat transfer in semiconductor devices, and associated systems and devices, are described herein. In some embodiments, a method of manufacturing a semiconductor device includes forming a channel in a region of a substrate between a first die stack and a second die stack. The first die stack includes a plurality of first dies attached to each other by first film layers and the second die stack includes a plurality of second dies attached to each other by second film layers. The channel extends entirely through a thickness of the substrate. The method also includes applying heat to the first die stack to cure the first film layers. The channel reduces heat transfer from the first die stack to the second die stack.
Abstract:
A non-elastic material layer is formed above a carrier wafer. An oxide layer is formed above the non-elastic material layer. Multiple integrated circuit die are bonded on the oxide layer using an oxide to oxide bond to form a reconstructed wafer.
Abstract:
Disclosed are methods and apparatus for protecting dielectric films on microelectronic components from contamination associated with singulation, picking and handling of singulated microelectronic components from a wafer for assembly with other components.
Abstract:
A semiconductor manufacturing system comprises a laser and a heated bond tip and is configured to bond a die stack in a semiconductor assembly. The semiconductor assembly includes a wafer, manufacture from a material that is optically transparent to a beam emitted by the laser and configured to support a die stack comprising a plurality of semiconductor dies. A metal film is deposited on the wafer and heatable by the beam emitted by the laser. The heated bond tip applies heat and pressure to the die stack, compressing the die stack between the heated bond tip and the metal film and thermally bonding dies in the stack by heat emitted by the heated bond tip and the metal film when the metal film is heated by the beam emitted from the laser.
Abstract:
A semiconductor device assembly having a semiconductor device attached to a substrate with a foil layer on a surface of the substrate. A layer of adhesive connects the substrate to a first surface of the semiconductor device. The semiconductor device assembly enables processing on the second surface of the semiconductor device. An energy pulse may be applied to the foil layer causing an exothermic reaction to the foil layer that releases the substrate from the semiconductor device. The semiconductor device assembly may include a release layer positioned between the foil layer and the layer of adhesive that connects the substrate to the semiconductor device. The heat generated by the exothermic reaction breaks down the release layer to release the substrate from the semiconductor device. The energy pulse may be an electric charge, a heat pulse, or may be applied from a laser.
Abstract:
A semiconductor device assembly having a semiconductor device attached to a substrate with a foil layer on a surface of the substrate. A layer of adhesive connects the substrate to a first surface of the semiconductor device. The semiconductor device assembly enables processing on the second surface of the semiconductor device. An energy pulse may be applied to the foil layer causing an exothermic reaction to the foil layer that releases the substrate from the semiconductor device. The semiconductor device assembly may include a release layer positioned between the foil layer and the layer of adhesive that connects the substrate to the semiconductor device. The heat generated by the exothermic reaction breaks down the release layer to release the substrate from the semiconductor device. The energy pulse may be an electric charge, a heat pulse, or may be applied from a laser.
Abstract:
Methods of detaching semiconductor device structures from carrier structures may involve directing a laser through a carrier structure comprising a semiconductor material to a barrier material located between the carrier structure and a semiconductor device structure adhere to an opposite side of the barrier material. A bond between the carrier structure and an adhesive material temporarily securing the carrier structure to the semiconductor device structure may be released in response to heating of the barrier material by the laser beam. The carrier structure may be removed from the semiconductor device structure, the barrier material removed, and an adhesive bonding the semiconductor device structure to the barrier material removed.
Abstract:
A method of bonding a device wafer to a carrier wafer includes disposing a first adhesive over a central portion of a carrier wafer, the first adhesive having a first glass transition temperature, disposing a second adhesive over a peripheral portion of the carrier wafer, the second adhesive having a second glass transition temperature greater than the first glass transition temperature, and bonding the first adhesive to active front side of the device wafer and the second adhesive to a peripheral portion of the front side of the device wafer. Related assemblies may be used in such methods.
Abstract:
Semiconductor devices having electrical interconnections through vertically stacked semiconductor dies, and associated systems and methods, are disclosed herein. In some embodiments, a semiconductor assembly includes a die stack having a plurality of semiconductor dies. Each semiconductor die can include surfaces having an insulating material, a recess formed in at least one surface, and a conductive pad within the recess. The semiconductor dies can be directly coupled to each other via the insulating material. The semiconductor assembly can further include an interconnect structure electrically coupled to each of the semiconductor dies. The interconnect structure can include a monolithic via extending continuously through each of the semiconductor dies in the die stack. The interconnect structure can also include a plurality of protrusions extending from the monolithic via. Each protrusion can be positioned within the recess of a respective semiconductor die and can be electrically coupled to the conductive pad within the recess.