摘要:
The object of the present invention is to provide a fuel treating device having a small pressure loss and a high contacting efficiency between fuel and fuel treating material. To attain said object, fuel treating material(s) 16, 26, 36 is(are) movably arranged in a fuel treating container 12, 22, 32 and said fuel treating material(s) 16, 26, 36 is(are) moved by flow pressure of the fuel to improve the contacting efficiency between said fuel treating material(s) 16, 26, 36 and the fuel and treat fuel by contacting with said fuel treating materials 16, 26, 36.
摘要:
The producing method includes: (I) providing an active energy ray curable resin composition for mold surface release treatment between a mold having uneven microstructure on its surface and a substrate, and after curing the resin composition by irradiation with an active energy ray, peeling off the substrate together with a cured article of the active energy ray curable resin composition from the surface of the mold, thereby performing a release treatment to the surface of the mold; and (II), after step (I), providing an active energy ray curable resin composition for shaping between the substrate and the mold, the surface of which has been treated by the release treatment, and after curing the resin composition by an active energy ray, peeling off the substrate together with a cured article of the active energy ray curable resin composition for shaping from the surface of the mold.
摘要:
The present invention describes a reverse genetic system for Phlebovirus such as Rift Valley fever virus. This system comprised of RNA expression plasmids and protein expression plasmids. Additionally, the present invention also discloses the modification of this system to generate a recombinant virus that expresses a non-viral foreign gene. Furthermore, the present invention discloses the use of this system in the development of anti-Rift Valley fever virus vaccines, screening of antivirals testing for anti RVF immune response and developing marker vaccines for Rift Valley fever virus. We also claim the utility of this approach to other phleboviruses.
摘要:
A method of producing an aluminum alloy extruded product comprising: casting a billet using a 7000-series aluminum alloy having Mg of 0.95 to 1.95 mass %, Zn of 5.10 to 7.90 mass %, an excess mg or Zn content relative to a stoichiometric composition shown by MgZn2 of less than 0.5 mass %; an A=Zn−5.36×Mg (mass %) of −2.64 to 0.50; and at least one of Mn, Cr and Zr with a total content thereof being less than 0.25 mass %; homogenizing the billet at 450 to 550° C.; preheating the homogenized product at 480 to 540° C.; extruding the preheated product with a die heated at 440 to 500° C.; and subjecting the extruded product to press quenching at an air cooling rate of 29° C./min or more, wherein a proof stress increase due to natural aging is 15 Mpa or less and a hardness HV increase due to natural aging is seven or less.
摘要:
Animal models for severe acute respiratory syndrome-coronavirus infection of humans are needed to elucidate SARS pathogenesis and develop vaccines and antivirals. Transgenic mice were developed expressing human angiotensin-converting enzyme 2, a functional receptor for the virus, under the regulation of a global promoter. A transgenic lineage, designated AC70, was among the best characterized against SARS coronavirus infection, showing weight loss and other clinical manifestations before reaching 100% mortality within 8 days after intranasal infection. Inflammatory mediators were also detected in these tissues, coinciding with high levels of virus replication. In contrast, infected transgene-negative mice survived without showing any clinical illness. The severity of the disease developed in these transgenic mice, AC70 in particular, makes these mouse models valuable not only for evaluating the efficacy of antivirals and vaccines, but also for studying SARS coronavirus pathogenesis and infection by other coronaviruses utilizing human ACE2 for viral entry into cells.
摘要:
An aluminum alloy extruded product includes an aluminum alloy including 6.0 to 7.2 mass % of Zn, 1.0 to 1.6 mass % of Mg, 0.1 to 0.4 mass % of Cu, at least one component selected from the group consisting of Mn, Cr, and Zr in a respective amount of 0.25 mass % or less and a total amount of 0.15 to 0.25 mass %, 0.20 mass % or less of Fe, and 0.10 mass % or less of Si, with the balance substantially being aluminum, the aluminum alloy extruded product having a hollow cross-sectional shape, a recrystallization rate of 20% or less of a cross-sectional area of the extruded product, and a 0.2% proof stress of 370 to 450 MPa.