Abstract:
A diagnosis assisting apparatus includes a processor configured to: detect at least one target region from an acquired image and output position information of the target region; classify the target region based on predetermined classification conditions corresponding to diagnosis indices and output diagnosis assisting information indicating a degree of seriousness of the target region; and control a display image such that a first period, during which the diagnosis assisting information is displayed in a first region, is different from a second period, during which the position information is superimposed on the image in a second region and is displayed.
Abstract:
An endoscopic image processing apparatus is configured to generate a display image including one main screen and one or more sub-screens smaller than the main screen for displaying an endoscopic image obtained by picking up an image of an object in a subject with an endoscope. The endoscopic image processing apparatus includes a processor. The processor receives the endoscopic image and detects one or more lesion candidate regions included in the endoscopic image, highlights a position of the lesion candidate region, and sets, based on any one of a state of the lesion candidate region, a work state of a user who performs work using the endoscope, or a display state of the display image, a highlighting method in highlighting a position of the lesion candidate region included in at least one of the main screen or the sub-screen.
Abstract:
An endoscopic image processing apparatus includes a processor. The processor detects a lesion candidate region included in an endoscopic image obtained by picking up an image of an inside of a subject with an endoscope, highlights a position of the lesion candidate region detected from the endoscopic image, when a plurality of lesion candidate regions are detected from the endoscopic image, relatively evaluates visibility of the plurality of lesion candidate regions, and performs setting for position highlighting of the lesion candidate region based on an evaluation result of the visibility.
Abstract:
A diagnosis support apparatus performs identification for a plurality of support items, which are identification classifications about diagnosis support, and the diagnosis support apparatus is provided with a processor. The processor performs analysis processing for acquiring analysis results including an analysis result about an observation mode by analyzing at least one of an input signal specifying the observation mode and an observation image obtained by observing an inside of a subject with an endoscope; performs support item setting processing for setting a support item corresponding to the analysis results obtained by the analysis processing, among the plurality of support items, which are the identification classifications; and generates diagnosis support information, which is information used for diagnosis of a legion candidate area included in the observation image, based on an identification index corresponding to the set support item and the observation image.
Abstract:
An image processing apparatus have a processor configured to: receive a plurality of images of a tissue including a lesion portion, the plurality of images being received from an endoscope; judge, based on a signal from the endoscope, whether or not to engage a differentiation classification operation; in response to judging that the differentiation classification operation is engaged, process the plurality of images to specify the lesion portion within one or more of the plurality of images; and perform differentiation classification on the one or more images to classify the lesion portion into at least one class of a plurality of classes; and in response to judging that the differentiation classification operation is not engaged, not process the plurality of images to specify the lesion portion within the one or more of the plurality of images.
Abstract:
An image processing apparatus includes: a narrowband image acquisition unit configured to acquire a narrowband image showing inside of a lumen; a white light image acquisition unit configured to acquire a white light image showing the inside of the lumen; and a composite image generation unit configured to combine information of the narrowband image to the white light image, according to a depth of a submucosal object, to generate a composite image for display.
Abstract:
An image processing apparatus includes: a detecting unit that detects regions of interest that are estimated as an object to be detected, from a group of a series of images acquired by sequentially imaging a lumen of a living body, and to extract images of interest including the regions of interest; a neighborhood range setting unit that sets, as a time-series neighborhood range, a neighborhood range of the images of interest in the group of the series of images arranged in time series so as to be wider than an interval between images that are continuous in time series in the group of the series of images; an image-of-interest group extracting unit that extracts an image-of-interest group including identical regions of interest from the extracted images of interest, based on the time-series neighborhood range; and a representative-image extracting unit that extracts a representative image from the image-of-interest group.
Abstract:
An image processing apparatus includes: a detecting unit configured to detect images of interest including regions of interest that are estimated as an object to be detected, from a group of a series of images acquired by sequentially imaging a lumen of a living body; a global similarity calculating unit configured to calculate a global similarity that is a similarity between regions including at least regions other than the regions of interest, between the images of interest different from one another; an image-of-interest group extracting unit configured to extract an image-of-interest group including identical regions of interest, in accordance with comparison between a threshold and the global similarity or a determination parameter based on the global similarity; and a representative image extracting unit configured to extract a representative image from the image-of-interest group.
Abstract:
An image processing apparatus includes: an imaging distance estimating unit configured to estimate an imaging distance to a subject shown in an image; an examination region setting unit configured to set an examination region in the image such that an index indicating a spread of a distribution of imaging distances to the subject shown in the examination region is within a given range; and an abnormal structure identifying unit configured to identify whether or not a microstructure of the subject shown in the examination region is abnormal, by using texture feature data that enables identification of an abnormality in the microstructure of the subject shown in the examination region, the texture feature data being specified according the examination region.
Abstract:
An image processing apparatus includes: a color feature data calculation unit configured to calculate color feature data of each pixel in an intraluminal image or color feature data of each small region obtained by dividing the intraluminal image into a plurality of small regions; a residue candidate distribution determination unit configured to determine, from among the color feature data, color feature data distributed on a side comparatively strong in redness to be a mucosa distribution and determine color feature data distributed on a side comparatively weak in redness to be a residue candidate distribution; and a residue distribution determination unit configured to determine, from among distributions of the color feature data determined to be the residue candidate distribution, a residue candidate distribution distributed on a side strong in yellowness with reference to the mucosa distribution to be a residue distribution.