Abstract:
Configurations are described for conducting ophthalmic procedures to address cataract-related clinical challenges. In one embodiment, a one-piece patient contact interface may be utilized to couple a diagnostic and/or interventional system to a cornea of a patient; in another embodiment, a two-part configuration may be utilized; in another embodiment, a liquid interface two-part embodiment may be utilized.
Abstract:
A system and method for insetting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
Abstract:
A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
Abstract:
Systems and methods here may be used to support a femtosecond laser eye surgery system including utilizing a floating head and/or patient support to maintain alignment of the system with a patient using feedback loops of force sensors in a patient interface. In some examples, the floating head and/or patient support may counteract movements detected in the force sensors. In some example embodiments, a ranging subsystem may detect and compensate for different arrangements of the floating head assembly using a ranging sample beam.
Abstract:
Configurations are described for conducting ophthalmic procedures to address cataract-related clinical challenges. In one embodiment, a one-piece patient contact interface may be utilized to couple a diagnostic and/or interventional system to a cornea of a patient; in another embodiment, a two-part configuration may be utilized; in another embodiment, a liquid interface two-part embodiment may be utilized.
Abstract:
An optical beam scanning system for incising target tissue in a patient's eye includes a laser source configured to deliver a laser beam to produce optical breakdown and initiate a plasma-mediated process; an OCT imaging device used to create an image of eye tissue that includes the cornea; a delivery system for delivering the laser beam to the target tissue to form a cataract incision; a scanner operable to scan the focal spot of the laser beam to different locations within the patient's eye; and a controller operatively coupled to the laser source, the imaging device, and the scanner. The OCT device is configured to scan the eye tissue to generate imaging data used to define an incision pattern configured to incise one or more relaxation incisions into the cornea, so that the one or more relaxation incisions are formed starting from the inside and proceeding outward.