Abstract:
A laser eye surgery system includes a laser to generate a laser beam. A spatial measurement system generates a measurement beam and measure a spatial disposition of an eye. A processor is coupled to the laser and the spatial measurement system, the processor comprising a tangible medium embodying instructions to determine a spatial model of the eye in an eye coordinate reference system based on the measurement beam. The spatial model is mapped from the eye coordinate reference system to a machine coordinate reference system. A laser fragmentation pattern is determined based on a plurality of laser fragmentation parameters. The laser fragmentation pattern and the spatial model is rotated by a first rotation angle such that the spatial model is aligned with the reference axis of the machine coordinate reference system and the rotated laser fragmentation pattern is aligned with the corneal incision.
Abstract:
A method of reversibly separating an imaging assembly from an optical path in a laser surgical system includes generating an electromagnetic beam, propagating the electromagnetic beam from the beam source to a scanner along an optical path, the optical path comprising a first optical element that attenuates the electromagnetic beam, reversibly inserting a confocal bypass assembly into the optical path, diverting the electromagnetic beam along a diversion optical path around the first optical element, wherein the confocal bypass assembly automatically exits the optical path when a power loss occurs to one or more components of the system.
Abstract:
A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye. A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.
Abstract:
A laser eye surgery system produces a treatment beam that includes a plurality of laser pulses. An optical coherence tomography (OCT) subsystem produces a source beam used to locate one or more structures of an eye. The OCT subsystem is used to sense the distance between a camera objective on the underside of the laser eye surgery system and the patient's eye. Control electronics compare the sensed distance with a pre-determined target distance, and reposition a movable patient support toward or away the camera objective until the sensed distance is at the pre-determined target distance. A subsequent measurement dependent upon the spacing between the camera objective and the patient's eye is performed, such as determining the astigmatic axis by observing the reflection of a plurality of point source LEDs arranged in concentric rings off the eye.
Abstract:
A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.