Abstract:
The amount of energy to provide optical breakdown can be determined based on mapped optical breakdown thresholds of the treatment volume, and the laser energy can be adjusted in response to the mapped breakdown thresholds. The mapping of threshold energies can be combined with depth and lateral calibration in order to determine the location of optical breakdown along the laser beam path for an amount of energy determined based on the mapping. The mapping can be used with look up tables to determine mapped locations from one reference system to another reference system.
Abstract:
A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
Abstract:
A system for ophthalmic surgery includes a laser source configured to deliver an ultraviolet laser beam comprising laser pulses having a wavelength between 320 nm and 370 nm to photodecompose one or more intraocular targets within the eye with chromophore absorbance. The pulse energy, the pulse duration, and the focal spot are such that an irradiance at the focal spot is sufficient to photodecompose the one or more intraocular targets without exceeding a threshold of formation of a plasma and an associated cavitation event. An optical system operatively coupled to the laser source and configured to focus the ultraviolet laser beam to a focal spot and direct the focal spot in a pattern into the one or more intraocular targets. The optical system focuses the laser beam at a numerical aperture that provides for the focal spot to be scanned over a scan range of 6 mm to 10 mm.
Abstract:
The amount of energy to provide optical breakdown can be determined based on mapped optical breakdown thresholds of the treatment volume, and the laser energy can be adjusted in response to the mapped breakdown thresholds. The mapping of threshold energies can be combined with depth and lateral calibration in order to determine the location of optical breakdown along the laser beam path for an amount of energy determined based on the mapping. The mapping can be used with look up tables to determine mapped locations from one reference system to another reference system.
Abstract:
A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
Abstract:
A system for ophthalmic surgery includes a laser source configured to deliver an ultraviolet laser beam comprising laser pulses having a wavelength between 320 nm and 370 nm to photodecompose one or more intraocular targets within the eye with chromophore absorbance. The pulse energy, the pulse duration, and the focal spot are such that an irradiance at the focal spot is sufficient to photodecompose the one or more intraocular targets without exceeding a threshold of formation of a plasma and an associated cavitation event. An optical system operatively coupled to the laser source and configured to focus the ultraviolet laser beam to a focal spot and direct the focal spot in a pattern into the one or more intraocular targets. The optical system focuses the laser beam at a numerical aperture that provides for the focal spot to be scanned over a scan range of 6 mm to 10 mm.
Abstract:
The amount of energy to provide optical breakdown can be determined based on mapped optical breakdown thresholds of the treatment volume, and the laser energy can be adjusted in response to the mapped breakdown thresholds. The mapping of threshold energies can be combined with depth and lateral calibration in order to determine the location of optical breakdown along the laser beam path for an amount of energy determined based on the mapping. The mapping can be used with look up tables to determine mapped locations from one reference system to another reference system.
Abstract:
A system for ophthalmic surgery includes a laser source configured to deliver an ultraviolet laser beam comprising laser pulses having a wavelength between 320 nm and 370 nm to photodecompose one or more intraocular targets within the eye with chromophore absorbance. The pulse energy, the pulse duration, and the focal spot are such that an irradiance at the focal spot is sufficient to photodecompose the one or more intraocular targets without exceeding a threshold of formation of a plasma and an associated cavitation event. An optical system operatively coupled to the laser source and configured to focus the ultraviolet laser beam to a focal spot and direct the focal spot in a pattern into the one or more intraocular targets. The optical system focuses the laser beam at a numerical aperture that provides for the focal spot to be scanned over a scan range of 6 mm to 10 mm.
Abstract:
Methods and apparatus are configures to measure an eye without contacting the eye with a patient interface, and these measurements are used to determine alignment and placement of the incisions when the patient interface contacts the eye. The pre-contact locations of one or more structures of the eye can be used to determine corresponding post-contact locations of the one or more optical structures of the eye when the patient interface has contacted the eye, such that the laser incisions are placed at locations that promote normal vision of the eye. The incisions are positioned in relation to the pre-contact optical structures of the eye, such as an astigmatic treatment axis, nodal points of the eye, and visual axis of the eye.
Abstract:
A fiducial is generated on an internal anatomical structure of the eye of a patient with a surgical laser. A tonic artificial intraocular lens (IOL) is positioned so that a marker of the tonic IOL is in a predetermined positional relationship relative to the fiducial. This positioning aligns the tonic IOL with the astigmatic or other axis of the eye. The toric IOL is then implanted in the eye of the patient with high accuracy.