Abstract:
A transmitter apparatus wherein a simple structure is used to successfully suppress the degradation of error rate performance that otherwise would be caused by fading or the like. There are included encoding parts that encode transport data; a mapping part that performs such a mapping that encoded data sequentially formed by the encoding parts are not successively included in the same symbol, thereby forming data symbols; and a symbol interleaver that interleaves the data symbols. In this way, a low computational complexity can be used to perform an interleaving process equivalent to a bit interleaving process to effectively improve the reception quality at a receiving end.
Abstract:
A transmission apparatus includes a plurality of orthogonal frequency division multiplexing (OFDM) modulation signal generators, which generate a first OFDM modulation signal and a second OFDM modulation signal. The transmission apparatus also includes a transmitter that transmits the first OFDM modulation signal from a first antenna and the second OFDM modulation signal from a second antenna, in an identical frequency band. A reception apparatus is provided, which includes a plurality of antennas that receive a plurality of OFDM modulation signals; a plurality of OFDM demodulators that transform the plurality of OFDM modulation signals to a plurality of reception signals using Fourier transform; an estimator that outputs a distortion estimation signal using one or more symbols for demodulation included in the plurality of reception signals; and a demodulator that compensates for distortion of the reception signals using the distortion estimation signal and demodulates a data symbol included in the reception signals.
Abstract:
A communication apparatus includes a reference signal generating section, a transmitting section, a propagation estimating section, a first data acquiring section, and a decoding section. The reference signal generating section generates a first reference signal to enable a communicating party to estimate a propagation environment. The transmitting section transmits the first reference signal. The propagation estimating section estimates a first propagation estimation value of the propagation environment using a second reference signal transmitted from the communicating party. The first data acquiring section generates first data using the first propagation estimation value. The decoding section decodes a transmission signal encoded using a second propagation estimation value that is estimated by the communicating party using the first reference signal, to obtain second data using the first data.
Abstract:
A transmission apparatus includes a plurality of orthogonal frequency division multiplexing (OFDM) modulation signal generators, which generate a first OFDM modulation signal and a second OFDM modulation signal. The transmission apparatus also includes a transmitter that transmits the first OFDM modulation signal from a first antenna and the second OFDM modulation signal from a second antenna, in an identical frequency band. A reception apparatus is provided, which includes a plurality of antennas that receive a plurality of OFDM modulation signals; a plurality of OFDM demodulators that transform the plurality of OFDM modulation signals to a plurality of reception signals using Fourier transform; an estimator that outputs a distortion estimation signal using one or more symbols for demodulation included in the plurality of reception signals; and a demodulator that compensates for distortion of the reception signals using the distortion estimation signal and demodulates a data symbol included in the reception signals.
Abstract:
A transmission apparatus includes a plurality of orthogonal frequency division multiplexing (OFDM) modulation signal generators, which generate a first OFDM modulation signal and a second OFDM modulation signal. The transmission apparatus also includes a transmitter that transmits the first OFDM modulation signal from a first antenna and the second OFDM modulation signal from a second antenna, in an identical frequency band. A reception apparatus is provided, which includes a plurality of antennas that receive a plurality of OFDM modulation signals; a plurality of OFDM demodulators that transform the plurality of OFDM modulation signals to a plurality of reception signals using Fourier transform; an estimator that outputs a distortion estimation signal using one or more symbols for demodulation included in the plurality of reception signals; and a demodulator that compensates for distortion of the reception signals using the distortion estimation signal and demodulates a data symbol included in the reception signals.
Abstract:
Modulated signal A is transmitted from a first antenna, and modulated signal B is transmitted from a second antenna. As modulated signal B, modulated symbols S2(i) and S2(i+1) obtained from different data are transmitted at time i and time i+1 respectively. In contrast, as modulated signal A, modulated symbols S1(i) and S1(i)′ obtained by changing the signal point arrangement of the same data are transmitted at time i and time i+1 respectively. As a result the reception quality can be changed intentionally at time i and time i+1, and therefore using the demodulation result of modulated signal A of a time when the reception quality is good enables both modulated signals A and B to be demodulated with good error rate performances.
Abstract:
A transmission apparatus includes a plurality of orthogonal frequency division multiplexing (OFDM) modulation signal generators, which generate a first OFDM modulation signal and a second OFDM modulation signal. The transmission apparatus also includes a transmitter that transmits the first OFDM modulation signal from a first antenna and the second OFDM modulation signal from a second antenna, in an identical frequency band. A reception apparatus is provided, which includes a plurality of antennas that receive a plurality of OFDM modulation signals; a plurality of OFDM demodulators that transform the plurality of OFDM modulation signals to a plurality of reception signals using Fourier transform; an estimator that outputs a distortion estimation signal using one or more symbols for demodulation included in the plurality of reception signals; and a demodulator that compensates for distortion of the reception signals using the distortion estimation signal and demodulates a data symbol included in the reception signals.
Abstract:
A transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased. An encoding part subjects transport data to a block encoding process to form block encoded data. A modulating part modulates the block encoded data to form data symbols; and an arranging (interleaving) part arranges (interleaves) the block encoded data in such a manner that the intra-block encoded data of the encoded blocks, which include their respective single different data symbol, get together, and then supplies the arranged (interleaved) block encoded data to the modulating part. In this way, there can be provided a transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased.
Abstract:
A transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased. An encoding part subjects transport data to a block encoding process to form block encoded data. A modulating part modulates the block encoded data to form data symbols; and an arranging (interleaving) part arranges(interleaves) the block encoded data in such a manner that the intra-block encoded data of the encoded blocks, which include their respective single different data symbol, get together, and then supplies the arranged(interleaved) block encoded data to the modulating part. In this way, there can be provided a transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased.
Abstract:
A transmitter apparatus wherein a simple structure is used to successfully suppress the degradation of error rate performance that otherwise would be caused by fading or the like. There are included encoding parts that encode transport data; a mapping part that performs such a mapping that encoded data sequentially formed by the encoding parts are not successively included in the same symbol, thereby forming data symbols; and a symbol interleaver that interleaves the data symbols. In this way, a low computational complexity can be used to perform an interleaving process equivalent to a bit interleaving process to effectively improve the reception quality at a receiving end.