Abstract:
Repetitions of a control signal across a plurality of first subframes and a data signal allocated to a resource indicated by the control signal are received. Repetition of a response signal for the data signal across a plurality of second subframes is performed, and a transmission signal is generated by multiplying the response signals in the second subframes by, among a plurality of first sequences orthogonal to one another, components of one of the first sequences which is associated with the first subframes, respectively.
Abstract:
The present disclosure provides wireless communication methods for repeated transmission of channels, and wireless communication devices therefor. In one embodiment, the gap between the starting subframe of a first channel and the starting subframe of a second channel is defined or configured. In another embodiment, Mx*W=M and Mx*n=N is satisfied, where Mx is the number of subframes reserved for the channel in one HARQ process, M is RTT for one HARQ process, W is a positive integer and represents the maximum number of HARQ processes transmitting the channel within M subframes, N is the gap between the starting subframes of the channel in two HARQ processes, and n is a positive integer. In yet another embodiment, time-frequency resources for the channel in different HARQ processes are different.
Abstract:
A plurality of the same signals to be repetitively transmitted over multiple subframes are multiplied, in each subframe, by one of components of one sequence of a plurality of orthogonal sequences orthogonal to each other thereby generating a transmission signal. The generated transmission signal is transmitted.
Abstract:
Received Signal Strength Indicator (RSSI) is measured accurately even in a case where a discovery signal is transmitted. A receiver receives a plurality of subframes, at least one of which includes a discovery signal, and a measurer measures Reference Signal Reception Power (RSRP) using a first resource in which the discovery signal is mapped, measures RSSI using a second resource different from the first resource for which the discovery signal is mapped, and calculates Reference Signal Reception Quality (RSRQ) using RSRP and RSSI.
Abstract:
It is possible to provide a radio communication terminal device and a radio transmission method which can improve reception performance of a CQI and a reference signal. A phase table storage unit stores a phase table which correlates the amount of cyclic shift to complex coefficients {w1, w2} to be multiplied on the reference signal. A complex coefficient multiplication unit reads out a complex coefficient corresponding to the amount of cyclic shift indicated by resource allocation information, from the phase table storage unit and multiplies the read-out complex coefficient on the reference signal so as to change the phase relationship between the reference signals in a slot.
Abstract:
Provided is a radio communication device which can make Acknowledgement (ACK) reception quality and Negative Acknowledgement (NACK) reception quality to be equal to each other. The device includes: a scrambling unit (214) which multiplies a response signal after modulated, by a scrambling code “1” or “e−j(π/2)” so as to rotate a constellation for each of response signals on a cyclic shift axis; a spread unit (215) which performs a primary spread of the response signal by using a Zero Auto Correlation (ZAC) sequence set by a control unit (209); and a spread unit (218) which performs a secondary spread of the response signal after subjected to the primary spread, by using a block-wise spread code sequence set by the control unit (209).
Abstract:
Provided are a radio terminal device, a radio base station device, and a channel signal forming method which can prevent quality degradation of the downlink resource allocation information by reducing the frequency of the zero information addition process to the downlink resource allocation information when executing communication using an uplink unit band and multiple downlink unit bands correlated to the uplink unit band. A base station includes: a PDCCH generation unit which includes the uplink allocation information relating to the uplink unit band only in some of the channel signals formed for each of the downlink unit bands; and a padding unit which adds zero information to the downlink allocation information only in the selected some channel signals having the bandwidth of the corresponding downlink unit band smaller than that of the uplink unit band until the downlink allocation information size becomes equal to the uplink allocation information size.
Abstract:
Provided is a radio communication device which can make Acknowledgement (ACK) reception quality and Negative Acknowledgement (NACK) reception quality to be equal to each other. The device includes: a scrambling unit (214) which multiplies a response signal after modulated, by a scrambling code “1” or “e−j(π/2)” so as to rotate a constellation for each of response signals on a cyclic shift axis; a spread unit (215) which performs a primary spread of the response signal by using a Zero Auto Correlation (ZAC) sequence set by a control unit (209); and a spread unit (218) which performs a secondary spread of the response signal after subjected to the primary spread, by using a block-wise spread code sequence set by the control unit (209).
Abstract:
Where first and second reference signals for a first and second communication system, respectively, are transmitted, resources that affect a reception apparatus compatible only with the first communication system can be minimized, and the throughput can be prevented from being deteriorated. As resources for a reference signal CSI-RS for LTE-A, last half symbols in a time direction of a resource unit RB/Sub-frame defined in a frequency-time domain are used, and the CSI-RS is allocated in a position up to the last two symbols or in the last symbol, or the like, of a particular RB/Sub-frame and transmitted when a reference signal 4RS for LTE is transmitted to a reception apparatus in addition to transmitting CSI-RS for LTE-A. The reception apparatus receives CSI-RS allocated in the last half symbol of RB/Sub-frame based on CSI-RS allocation information, measures channel quality by using this CSI-RS, and transmits and reports feedback information.
Abstract:
Disclosed are a wireless communication apparatus and frequency hopping method which minimize the change in the instantaneous power distribution characteristics of the time waveform of transmission signals when a plurality of channels are multiplexed by frequency division. At a terminal (200), a mapping unit (212) maps the PUCCH to frequency resources of a first slot, maps the PUSCH to frequency resources, among the frequency resources of the first slot, separated exactly by predetermined frequency spacing (B) from the frequency resources to which the PUCCH is mapped, and cyclically shifts the frequencies so as to map the PUCCH and PUSCH to frequency resources, within an IDFT or IFFT bandwidth, of a second slot while maintaining the predetermined frequency spacing (B), thereby allowing frequency hopping of the PUCCH and PUSCH between the first slot and the second slot.