摘要:
Methanotrophic bacterial strains are provided that have been optimized for the production of carotenoid compounds through the down-regulation of one or more of the crtN1, aid, crtN2 and crtN3 genes of the carotenoid biosynthetic pathway. The resulting strains lack pigmented C30 carotenoid compounds, and show an increase in the production of C40 carotenoids. The use of the optimized host strains for the production of the C40 carotenoids canthaxanthin and astaxanthin is also described.
摘要:
A method for the in vivo bioconversion of cyclic carotenes having a β-ionone ring to the corresponding aryl carotene is provided. Gram negative host cells expressing a heterologous, codon-optimized gene encoding a carotene desaturase are grown in the presence of a suitable cyclic carotene substrate to effect the production of aromatic carotenoids.
摘要:
A carotenogenic biosynthetic gene cluster has been isolated from Panteoa stewartii strain DC413, wherein the genetic organization of the cluster is crtE-idi-crt)(-crtY-crtI-crtB-crtZ. The genes contained within this cluster encode geranylgeranyl pyrophosphate (GGPP) synthetase (CrtE), isopentenyl pyrophosphate isomerase (Idi), zeaxanthin glucosyl transferase (CrtX), lycopene cyclase (CrtY), phytoene desaturase (Crtl), phytoene synthase (CrtB), and β-carotene hydroxylase (CrtZ). The gene cluster, genes and their products are useful for the conversion of farnesyl pyrophosphate to carotenoids. Vectors containing those DNA segments, host cells containing the vectors and methods for producing those enzymes by recombinant DNA technology in transformed host organisms are disclosed.
摘要:
Recombinant bacteria having an improved ability to utilize sucrose are provided. These recombinant bacteria have nucleotide sequences encoding sucrose utilization polypeptides integrated into their genome between the yihP gene or its homolog and the yihO gene or its homolog. Additionally, methods of utilizing the recombinant bacteria to produce products such as glycerol and glycerol-derived products are provided.
摘要:
Disrupting the expression of endogenous Escherichia host cell genes gcvA and spr provides mutant host cells having increased heterologous peptide production. The addition of a genetic modification to the coding region of gene yejM further enhances peptide production and facilitates easier downstream processing. Recombinant Escherichia host cells are provided as well as methods of using such host cells for heterologous peptide production.
摘要:
The present invention describes a mutant plasmid replication control region having the ability to convey a phenotype of altered plasmid copy number to the plasmid on which it resides. The mutant replication control region is based on a similar region isolated from the pBBR1 plasmid family. Plasmids containing this replication control region cannot be classed as belonging to any known incompatibility group and thus may co-exist with a broad range of other plasmids in a single host.
摘要:
Methanotrophic bacterial strains are provided that have been optimized for the production of carotenoid compounds through the down-regulation of one or more of the crtN1, ald, crtN2 and crtN3 genes of the carotenoid biosynthetic pathway. The resulting strains lack pigmented C30 carotenoid compounds, and show an increase in the production of C40 carotenoids. The use of the optimized host strains for the production of the C40 carotenoids canthaxanthin and astaxanthin is also described.
摘要:
Genes have been isolated from Rhodococcus and Deinococcus which encode a specific lycopene β-cyclase capable of converting acyclic carotenoids with at least one ψ-end group to the corresponding asymmetric carotenoid containing a single β-ionone ring end group. The genes are new. Transformed host cells expressing the present genes and methods for the bio-conversion of acylic carotenoid substrates to corresponding asymmetric carotenoid are also provided.
摘要:
A novel CrtZ carotenoid hydroxylase, isolated from Brevundimonas vesicularis DC263, is provided that is useful for the production of hydroxylated carotenoids. Additionally, a previously identified hypothetical protein from Novosphingobium aromaticivorans has found to have carotenoid hydroxylase activity. Both hydroxylase genes exhibit low homology in comparison to other CrtZ hydroxylases previously reported. Expression of the hydroxylases in heterologous host cells enabled production of hydroxylated carotenoids.
摘要:
Protein engineered CrtO ketolases are provided having increased carotenoid ketolase activity. Methods using the present CrtO ketolases are also provided for increasing ketocarotenoid production in suitable production hosts.