摘要:
Methanotrophic bacterial strains are provided that have been optimized for the production of carotenoid compounds through the down-regulation of one or more of the crtN1, ald, crtN2 and crtN3 genes of the carotenoid biosynthetic pathway. The resulting strains lack pigmented C30 carotenoid compounds, and show an increase in the production of C40 carotenoids. The use of the optimized host strains for the production of the C40 carotenoids canthaxanthin and astaxanthin is also described.
摘要:
Mutant delta-5 desaturases, having the ability to convert dihomo-gamma-linolenic acid [DGLA; 20:3 omega-6] to arachidonic acid [ARA; 20:4 omega-6] and/or eicosatetraenoic acid [ETA; 20:4 omega-3] to eicosapentaenoic acid [EPA; 20:5 omega-3] and possessing at least one mutation within the HPGG (SEQ ID NO:7) motif of the cytochome b5-like domain and at least one mutation within the HDASH (SEQ ID NO:8) motif are disclosed. Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-5 desaturases, along with a method of making long chain polyunsaturated fatty acids [“PUFAs”], are also disclosed.
摘要翻译:具有将dihomo-γ-亚麻酸转化的能力的变体delta-5去饱和酶[DGLA; 20:3ω-6]花生四烯酸[ARA; 20:4ω-6]和/或二十碳四烯酸[ETA; 20:4ω-3]至二十碳五烯酸[EPA; 20:5ω-3],并且在细胞色素b5样结构域的HPGG(SEQ ID NO:7)基序和HDASH(SEQ ID NO:8)基序内的至少一个突变中具有至少一个突变。 还公开了分离的核酸片段和包含编码Δ-5去饱和酶的片段的重组构建物,以及制备长链多不饱和脂肪酸[“PUFA”]的方法。
摘要:
Mutant delta-5 desaturases, having the ability to convert dihomo-gamma-linolenic acid [DGLA; 20:3 omega-6] to arachidonic acid [ARA; 20:4 omega-6] and/or eicosatetraenoic acid [ETA; 20:4 omega-3] to eicosapentaenoic acid [EPA; 20:5 omega-3] and possessing at least one mutation within the HPGG (SEQ ID NO:7) motif of the cytochome b5-like domain and at least one mutation within the HDASH (SEQ ID NO:8) motif are disclosed. Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-5 desaturases, along with a method of making long chain polyunsaturated fatty acids [“PUFAs”], are also disclosed.
摘要翻译:具有将dihomo-γ-亚麻酸转化的能力的变体delta-5去饱和酶[DGLA; 20:3ω-6]花生四烯酸[ARA; 20:4ω-6]和/或二十碳四烯酸[ETA; 20:4ω-3]至二十碳五烯酸[EPA; 20:5ω-3],并且在细胞色素b5样结构域的HPGG(SEQ ID NO:7)基序和HDASH(SEQ ID NO:8)基序内的至少一个突变中具有至少一个突变。 还公开了分离的核酸片段和包含编码Δ-5去饱和酶的片段的重组构建物,以及制备长链多不饱和脂肪酸[“PUFA”]的方法。
摘要:
A method to increase carotenoid production in carotenogenic microbial host cells is provided by down-regulating or disrupting glycogen synthesis. Disruption of glycogen synthase activity in a carotenogenic microbial host cell significantly increased carotenoid production. Carotenogenic microorganisms are also provided that have been optimized for the production of carotenoid compounds through the down-regulation and/or disruption of glycogen synthase activity.
摘要:
The present method is useful for the identification of genes, ORF's and other nucleic acid molecules which are essential for the expression of a specific phenotype in microorganisms. The method employs In vitro transposition in conjunction with an chromosomal integration vector containing a specific gene or genetic element whose function is unknown. Subsequent transformation of a recombination proficient host with the vector and growth first under non-integrating conditions and then under integrating conditions, followed by a selection screen for either single or double crossover events results in transformants that may be subjected to phenotypic screens to determine gene function.
摘要:
Described are engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing an oil comprising greater than 50 weight percent of eicosapentaenoic acid [“EPA”], an ω-3 polyunsaturated fatty acid, measured as a weight percent of total fatty acids [“% TFAs”] and having a ratio of at least 3.1 of EPA % TFAs, to linoleic acid, measured as % TFAs. These strains over-express at least one Δ9 elongase/Δ8 desaturase multizyme, in addition to other heterologous Δ9 elongases, Δ8 desaturases, Δ5 desaturases, Δ17 desaturases, Δ12 desaturases, C16/18 elongases, and optionally over-express diacylglycerol cholinephosphotransferases, malonyl CoA synthetases and/or acyl-CoA lysophospholipid acyltransferases. The expression of at least one peroxisome biogenesis factor protein is down-regulated. Methods for producing EPA within said host cells, oils obtained from the cells, and products therefrom are claimed.
摘要:
Engineered strains of the oleaginous yeast Yarrowia lipolytica are disclosed herein that are capable of producing microbial oil comprising greater than 25 weight percent of eicosapentaenoic acid [“EPA”], an omega-3 polyunsaturated fatty acid, measured as a weight percent of dry cell weight.
摘要:
Described are engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing an oil comprising greater than 50 weight percent of eicosapentaenoic acid [“EPA”], an ω-3 polyunsaturated fatty acid, measured as a weight percent of total fatty acids [“% TFAs”] and having a ratio of at least 3.1 of EPA % TFAs, to linoleic acid, measured as % TFAs. These strains over-express at least one Δ9 elongase/Δ8 desaturase multizyme, in addition to other heterologous Δ9 elongases, Δ8 desaturases, Δ5 desaturases, Δ17 desaturases, Δ12 desaturases, C16/18 elongases, and optionally over-express diacylglycerol cholinephosphotransferases, malonyl CoA synthetases and/or acyl-CoA lysophospholipid acyltransferases. The strains possess at least one peroxisome biogenesis factor protein knockout. Methods for producing EPA within said host cells, oils obtained from the cells, and products therefrom are claimed.
摘要:
A method to increase carotenoid production in carotenogenic microbial host cells is provided by down-regulating or disrupting glycogen synthesis. Disruption of glycogen synthase activity in a carotenogenic microbial host cell significantly increased carotenoid production. Carotenogenic microorganisms are also provided that have been optimized for the production of carotenoid compounds through the down-regulation and/or disruption of glycogen synthase activity.
摘要:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing carotenoids (e.g., β-carotene, lycopene, lutein, zeaxanthin, canthaxanthin, astaxanthin) are provided. The strains may also be engineered to co-produce at least one ω-3/ω-6 polyunsaturated fatty acid and/or at least one additional antioxidant. Methods of using the carotenoid products obtained (e.g., biomass and/or pigmented oils) in food and feed applications are also provided.