摘要:
Methanotrophic bacterial strains are provided that have been optimized for the production of carotenoid compounds through the down-regulation of one or more of the crtN1, ald, crtN2 and crtN3 genes of the carotenoid biosynthetic pathway. The resulting strains lack pigmented C30 carotenoid compounds, and show an increase in the production of C40 carotenoids. The use of the optimized host strains for the production of the C40 carotenoids canthaxanthin and astaxanthin is also described.
摘要:
A unique carotenogenic biosynthetic gene cluster has been isolated from Panteoa agglomerans strain DC404, wherein the genetic organization of the cluster is crtE-idi-crtY-crtI-crtB-crtZ. The genes contained within this cluster encode geranylgeranyl pyrophosphate (GGPP) synthetase (CrtE), isopentenyl pyrophosphate isomerase (Idi), lycopene cyclase (CrtY), phytoene desaturase (CrtI), phytoene synthase (CrtB), and β-carotene hydroxylase (CrtZ). The gene cluster, genes and their products are useful for the conversion of farnesyl pyrophosphate to carotenoids. Vectors containing those DNA segments, host cells containing the vectors and methods for producing those enzymes by recombinant DNA technology in transformed host organisms are disclosed.
摘要:
Genes have been isolated from Pectobacterium cypripedii encoding geranylgeranyl pyrophosphate (GGPP) synthase (CrtE), phytoene synthase (CrtB), phytoene desaturase (Crtl), lycopene cyclase (CrtY), β-carotene hydroxylase (CrtZ), and zeaxanthin glucosyl transferase (CrtX) activity. The genes and their products are useful for the conversion of farnesyl pyrophosphate to carotenoids. Vectors containing those DNA segments, host cells containing the vectors and methods for producing those enzymes by recombinant DNA technology in transformed host organisms are disclosed.
摘要:
A novel CrtZ carotenoid hydroxylase, isolated from Brevundimonas vesicularis DC263, is provided that is useful for the production of hydroxylated carotenoids. Additionally, a previously identified hypothetical protein from Novosphingobium aromaticivorans has found to have carotenoid hydroxylase activity. Both hydroxylase genes exhibit low homology in comparison to other CrtZ hydroxylases previously reported. Expression of the hydroxylases in heterologous host cells enabled production of hydroxylated carotenoids.
摘要:
A novel CrtZ carotenoid hydroxylase, isolated from Brevundimonas vesicularis DC263, is provided that is useful for the production of hydroxylated carotenoids. Additionally, a previously identified hypothetical protein from Novosphingobium aromaticivorans has found to have carotenoid hydroxylase activity. Both hydroxylase genes exhibit low homology in comparison to other CrtZ hydroxylases previously reported. Expression of the hydroxylases in heterologous host cells enabled production of hydroxylated carotenoids.
摘要:
A carotenogenic biosynthetic gene cluster has been isolated from Panteoa stewartii strain DC413, wherein the genetic organization of the cluster is crtE-idi-crtX-crtY-crtI-crtB-crtZ. The genes contained within this cluster encode geranylgeranyl pyrophosphate (GGPP) synthetase (CrtE), isopentenyl pyrophosphate isomerase (Idi), zeaxanthin glucosyl transferase (CrtX), lycopene cyclase (CrtY), phytoene desaturase (CrtI), phytoene synthase (CrtB), and β-carotene hydroxylase (CrtZ). The gene cluster, genes and their products are useful for the conversion of farnesyl pyrophosphate to carotenoids. Vectors containing those DNA segments, host cells containing the vectors and methods for producing those enzymes by recombinant DNA technology in transformed host organisms are disclosed.
摘要:
Methanotrophic bacterial strains are provided that have been optimized for the production of carotenoid compounds through the down-regulation of one or more of the crtN1, aid, crtN2 and crtN3 genes of the carotenoid biosynthetic pathway. The resulting strains lack pigmented C30 carotenoid compounds, and show an increase in the production of C40 carotenoids. The use of the optimized host strains for the production of the C40 carotenoids canthaxanthin and astaxanthin is also described.
摘要:
A carotenogenic biosynthetic gene cluster has been isolated from Panteoa stewartii strain DC413, wherein the genetic organization of the cluster is crtE-idi-crt)(-crtY-crtI-crtB-crtZ. The genes contained within this cluster encode geranylgeranyl pyrophosphate (GGPP) synthetase (CrtE), isopentenyl pyrophosphate isomerase (Idi), zeaxanthin glucosyl transferase (CrtX), lycopene cyclase (CrtY), phytoene desaturase (Crtl), phytoene synthase (CrtB), and β-carotene hydroxylase (CrtZ). The gene cluster, genes and their products are useful for the conversion of farnesyl pyrophosphate to carotenoids. Vectors containing those DNA segments, host cells containing the vectors and methods for producing those enzymes by recombinant DNA technology in transformed host organisms are disclosed.
摘要:
Enterococcus bacteria having enhanced tolerance to butanols have been isolated. The bacteria are useful for the fermentive production of butanol. New methods for the isolation of butanol tolerant Enterococcus are also provided.
摘要:
A method for the production of 1-butanol by fermentation using a microbial production host is disclosed. The method employs a reduction in temperature during the fermentation process that results in a more robust tolerance of the production host to the butanol product.