Abstract:
Methods and apparatuses for enhanced cell update procedures are presented. In an aspect, an example method may include determining that a first cell update trigger has occurred and generating a first cell update message based on determining that the first cell update trigger has occurred. In an additional aspect, the example method may include determining that a second cell update trigger has occurred subsequent to the first cell update trigger and generating a second cell update message based on determining that the second cell update trigger has occurred. Furthermore, the example method may include determining that at least a portion of the first cell update message is pending transmission at a time that the second cell update message is generated, discarding the first cell update message, and transmitting the second cell update message to a network entity.
Abstract:
Aspects of the present disclosure provide for a method and an apparatus for wireless communications using an intelligent Random Access Channel (RACH) procedure that may increase the probability of obtaining an available E-DCH resource quickly in a Universal Mobile Telecommunication System.
Abstract:
Disclosed are systems and methods for continuous inter-frequency measurement reconfigurations in a DC-HSUPA User Equipment (UE). In one aspect, the system may configure the UE to perform intra-frequency measurements on a frequency f1 and inter-frequency measurements on a frequency f2 in a dual carrier (DC) downlink (DL) mode and a single carrier (SC) uplink (UL) mode. The system may then reconfigure the UE to operate in a DC UL mode and continuing to perform inter-frequency measurements on the frequency f2 in the DC UL mode. The system may then reconfigure the UE to operate in the SC UL mode and continuing to perform inter-frequency measurements on frequency f2 in the SC UL mode.
Abstract:
Data is selectively transmitted over one or more carriers of a set of carriers. According to some aspects of the disclosure, a decision may be made to forgo the transmission of a preamble via one of the carriers (e.g., channels). For example, in a multi-carrier system, transmission of a preamble via one carrier may be inhibited if all of the data can be transmitted via another carrier. According to some aspects of the disclosure, a decision may be made to transmit different types of data on a single carrier rather than on multiple carriers. For example, a single carrier may be used to transmit schedule data and non-scheduled data if all of the data can be transmitted on one of the carriers (e.g., during a single transmission time interval). In this case, transmission of a preamble on another one of the carriers may therefore be inhibited.
Abstract:
Aspects of the present disclosure provide for a method and an apparatus for wireless communications using an intelligent Random Access Channel (RACH) procedure that may increase the probability of obtaining an available E-DCH resource quickly in a Universal Mobile Telecommunication System.