Abstract:
Techniques for managing cell update messages are described here. An information element (IE) that indicates the security status of a user equipment (UE) may be included in the cell update message when a cell update procedure is triggered during an ongoing security mode procedure. To ensure the size of the cell update message is equal to or smaller than the transport format size, other IEs may be omitted from the cell update message if the security mode procedure is in progress. Alternatively, if the security mode procedure is not in progress, there may not be a need to update the security status of the UE and, thus, the IE that indicates the security status may be omitted from the cell update message to reduce the size of the cell update message.
Abstract:
Aspects of the present disclosure provide for a method and an apparatus for wireless communications using an intelligent Random Access Channel (RACH) procedure that may increase the probability of obtaining an available E-DCH resource quickly in a Universal Mobile Telecommunication System.
Abstract:
Access terminals capable of employing multiple subscriptions are adapted to prevent out-of-service periods for one or more subscriptions. According to one example, an access terminal can establish a data communication on a first subscription utilizing a first network, and an idle mode connection on a second subscription utilizing a second network. A determination can be made that the first subscription is indicating data transfer. In response to such a determination, the second subscription can attempt a change from a radio access technology associated with the second network to a different radio access technology. Other aspects, embodiments, and features are also included.
Abstract:
The disclosure provides for recovering from radio link desynchronization. A network node may determining a first validity rate of a first plurality of protocol data units (PDUs) including a length indicator transmitted over the radio link using ciphering based on a hyperframe number and determining a second validity rate of a second plurality of PDUs without a length indicator transmitted over the radio link using ciphering based on the hyperframe number. The network node may detect desynchronization of the hyperframe number based on the first validity rate and the second validity rate. The network node may initiate a reset procedure to set a new hyperframe number for the radio link. The network node may detect desynchronization when the first validity rate is less than a first threshold, and the second validity rate is greater than or equal to a second threshold.
Abstract:
Aspects described herein relate to transmitting hybrid automatic repeat/request (HARQ) data in continuous packet connectivity (CPC) mode. Data is transmitted to a network according to a discontinuous transmit (DTX) cycle in a CPC mode. The CPC mode can be exited, however, based at least in part on detecting available HARQ data for transmission. In this regard, a next transmission opportunity configured for transmitting the available HARQ data is determined, where the next transmission opportunity is not within a transmission time instance defined by the DTX cycle, and the available HARQ data is transmitted during the next transmission opportunity outside of the CPC mode.
Abstract:
The present aspects relate to enabling a user equipment (UE) to operate in Dual Carrier mode during wireless communication, including generating an event trigger to be transmitted to a network entity in response to the UE satisfying a maximum transmit power threshold value, wherein generating the event trigger initiates a trigger timer that controls when to transmit the event trigger to the network. The aspects further include determining whether a plurality of optimization conditions are met, and modifying a transmission scheme based on the determination that the plurality of optimization conditions are met, wherein modifying the transmission scheme prevents the transmission of the event trigger to the network entity and resets the trigger timer.
Abstract:
Data is selectively transmitted over one or more carriers of a set of carriers. According to some aspects of the disclosure, a decision may be made to forgo the transmission of a preamble via one of the carriers (e.g., channels). For example, in a multi-carrier system, transmission of a preamble via one carrier may be inhibited if all of the data can be transmitted via another carrier. According to some aspects of the disclosure, a decision may be made to transmit different types of data on a single carrier rather than on multiple carriers. For example, a single carrier may be used to transmit schedule data and non-scheduled data if all of the data can be transmitted on one of the carriers (e.g., during a single transmission time interval). In this case, transmission of a preamble on another one of the carriers may therefore be inhibited.
Abstract:
Embodiments of the present invention include devices, systems and methods for enhanced system information decoding. For example, a method for wireless communication by a multi-SIM wireless communication device is described. The method includes determining time codes (TC) associated with system information (SI) messages for a first subscription. The method also includes determining that multiple SI messages for the first subscription are being sent on the same TC. The method further includes prioritizing decoding the SI messages for the first subscription when activity of an additional subscription can be preempted. Other aspects, embodiments, and features are also claimed and described.
Abstract:
An example method may include receiving a first subframe. In addition, the example method may include decoding information transmitted in the first subframe. Further, the example method may include switching to an inactive mode subsequent to the completion of the reception of the first subframe. Further still, the example method may include exiting the inactive mode and decoding downlink data transmitted in one or more second subframes in a current reception (Rx) burst time interval when the decoded information transmitted in the first subframe indicates an upcoming transmission of downlink data in the one or more second subframes.
Abstract:
Techniques for prioritizing time critical data for transmission during a power-limited state in DC-HSUPA operation are described. A user equipment (UE) may be in a power-limited state. The UE may identify non-scheduled, time critical data and scheduled data as available for transmission. The UE may detect that a minimum transport block size is about to be selected for a transmission on a secondary uplink carrier. The UE may prioritize the non-scheduled, time critical data over the scheduled data and transmit the non-scheduled, time critical data on a primary uplink carrier based on the prioritizing. The UE also may transmit the scheduled data during a transmission time interval (TTI) that is different from the TTI during which the non-scheduled, time critical data was transmitted. The non-scheduled, time critical data and the scheduled data may be transmitted using transmit diversity.