Abstract:
Techniques are disclosed for depth map generation in a structured light system where an optical transmitter is tilted relative to an optical receiver. The optical transmitter has a transmitter optical axis around which structured light spreads, and the optical receiver has a receiver optical axis around which a reflection of the structured light can be captured. The transmitter optical axis and the receiver optical axis intersect one another. A processing circuit compensates for the angle in the tilt in the reflected pattern to generate the depth map.
Abstract:
A structured light three-dimensional (3D) depth map based on content filtering is disclosed. In a particular embodiment, a method includes receiving, at a receiver device, image data that corresponds to a structured light image. The method further includes processing the image data to decode depth information based on a pattern of projected coded light. The depth information corresponds to a depth map. The method also includes performing one or more filtering operations on the image data. An output of the one or more filtering operations includes filtered image data. The method further includes performing a comparison of the depth information to the filtered image data and modifying the depth information based on the comparison to generate a modified depth map.
Abstract:
Systems and method for generating depth maps using active sensing technology, for scenes with moving objects, is disclosed. One aspect provides for a method that includes estimating areas in adjacent frames that correspond to a moving object by generating a probability map for each received frame, the probability map comprising a probability value at each pixel. The method also includes computing a convex temporal average map using a plurality of the reflected structured light frames including at least the prior frame received at time t−1, the received frame received at time t, and the next frame received at time t+1, the value at each pixel of the convex temporal average map weighted and normalized by the probability map at each pixel at each time. The method also includes determining the codewords at each pixel in the convex temporal average map, and generating a depth map from the determined codewords.
Abstract:
Methods, devices, and computer program products for multi-frame termporal de-noising using image alignment are describe. In one aspect, a method of capturing an image using a multi-frame temporal de-noising is described. The method includes capturing a plurality of frames and aligning the captured plurality of frames with each other. The method further includes determining a subset of frames of the captured plurality of frames, the subset determined based upon a focus quality of each frame of the plurality of frames. Finally, the method includes combining the subset of frames into a single image using a motion filter to reduce blurriness and ghosting.
Abstract:
A method for generating codes for a code mask is provided. A plurality of symbols may be arranged into an n1 by n2 symbol structure, where n1 and n2 are integer values. A plurality of codewords may be defined from different overlapping k1 by k2 windows within the symbol structure, wherein co-linear and spatially overlapping windows define unique codewords, and the codewords are unique in a first direction of the symbol structure but are repeated in a second direction that is perpendicular to the first direction. A plurality of the symbol structures as a code mask, wherein symbols in two adjacent k1 by k2 windows are selected so as to avoid codeword aliasing of codewords in the two adjacent k1 by k2 windows.
Abstract:
Methods, devices, and computer program products for multi-frame termporal de-noising using image alignment are describe. In one aspect, a method of capturing an image using a multi-frame temporal de-noising is described. The method includes capturing a plurality of frames and aligning the captured plurality of frames with each other. The method further includes determining a subset of frames of the captured plurality of frames, the subset determined based upon a focus quality of each frame of the plurality of frames. Finally, the method includes combining the subset of frames into a single image using a motion filter to reduce blurriness and ghosting.
Abstract:
An interactive display, including a cover glass having a front surface that includes a viewing area provides an input/output (I/O) interface for a user of an electronic device. An arrangement includes a processor, a light source, and a camera disposed outside the periphery of the viewing area coplanar with or behind the cover glass. The camera receives scattered light resulting from interaction, with an object, of light outputted from the interactive display, the outputted light being received by the cover glass from the object and directed toward the camera. The processor determines, from image data output by the camera, an azimuthal angle of the object with respect to an optical axis of the camera and/or a distance of the object from the camera.
Abstract:
Techniques are disclosed for depth map generation in a structured light system where an optical transmitter is tilted relative to an optical receiver. The optical transmitter has a transmitter optical axis around which structured light spreads, and the optical receiver has a receiver optical axis around which a reflection of the structured light can be captured. The transmitter optical axis and the receiver optical axis intersect one another. A processing circuit compensates for the angle in the tilt in the reflected pattern to generate the depth map.
Abstract:
Aspects of the present disclosure relate to systems and methods for time-of-flight ranging. An example time-of-flight system includes a transmitter including a plurality of light emitters for transmitting focused light, the plurality of light emitters including a first group of light emitters for transmitting focused light with a first field of transmission and a second group of light emitters for transmitting focused light with a second field of transmission. The first field of transmission at a depth from the transmitter is larger than the second field of transmission at the depth from the transmitter. The time-of-flight system also includes a receiver to receive reflections of the transmitted light.
Abstract:
A method for displaying preview images is disclosed. In one aspect, the method includes: receiving first images captured by a first camera having a first field-of-view (FOV), receiving second images captured by a second camera having a second FOV that is different than the first FOV, and displaying preview images generated based on the first and second images. The method may further include determining a spatial transform based on depth information associated with individual pixels in the first and second images, and upon receiving instructions to zoom in or out beyond a camera switching threshold, modifying the second image using the spatial transform and displaying the first image and the modified second image consecutively.