Abstract:
This disclosure describes systems, devices, apparatus, and methods, including computer programs encoded on storage media, for controlling a network with one or more access points (APs). A controller may be configured to schedule at least some resources of the one or more APs to improve network efficiency. The APs may measure and report a variety of information and statistics to the controller. The controller may determine one or more transmission parameters and one or more operations a given AP is permitted to perform during a respective time interval. The controller may communicate the one or more transmission parameters using an indication, such as a message. At least one AP associated with the controller may communicate with stations (STAs) using the one or more transmission parameters.
Abstract:
Access point functionality of a network device may be disabled, resulting in a coverage hole in a communication network and affecting performance of a client device. Various techniques can be implemented for detecting and minimizing coverage holes. In one embodiment, the network device can selectively establish a communication link with the client device depending on whether the client device is in a coverage hole and depending on whether the client device can detect another access point in the communication network. In some embodiments, the client device can determine that it is in a coverage hole in response to detecting a reserved SSID and can accordingly notify a central coordinator of the communication network. In some embodiments, the central coordinator can identify the network device (with disabled access point functionality) that can eliminate the coverage hole and can cause the network device to enable its access point functionality.
Abstract:
Methods, systems, and devices are described that enable a WLAN access point (AP) to schedule packet transmissions to (or from) a mobile device taking into consideration the schedule of various other coexisting transmission/reception (Tx/Rx) activities on the mobile device. Various approaches may increase throughput at the mobile device. Various approaches also may benefit other stations associated with the same AP.
Abstract:
This disclosure provides methods, devices and systems for protecting latency-sensitive communications during restricted target wake time (r-TWT) service periods (SPs). Some implementations more specifically relate to coordinated scheduling of r-TWT SPs between OBSSs. In some aspects, a first AP may coordinate with a second AP in scheduling r-TWT SPs so that latency-sensitive traffic in a first BSS does not interfere or collide with latency-sensitive traffic in a second BSS overlapping the first BSS. In some implementations, the first and second APs may schedule their respective r-TWT SPs to be orthogonal in time. In some other implementations, the first and second APs may schedule their r-TWT SPs to overlap in time, while allocating coordinated resources to concurrent or overlapping latency-sensitive traffic in the first and second BSSs (such as in accordance with one or more multi-AP coordination techniques).
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a receiver device may receive a management frame addressed to the receiver device; parse the management frame to identify a link identifier included in the management frame; associate the link identifier with link information included in the management frame; and update, based at least in part on the link information, a communication configuration for a link identified by the link identifier. Numerous other aspects are provided.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for managing data traffic in restricted target wake time (TWT) service periods (SPs). In some aspects, an access point (AP) may transmit a packet, at the beginning of a restricted TWT SP, that signals all non-member wireless stations (STAs) to defer access to the wireless medium for at least a threshold duration. Upon receiving the packet, any non-member STAs that are associated with the AP may set their network allocation vectors (NAVs) according to the duration indicated by a duration field of the received packet. In some implementations, low-latency STAs that are members of the TWT SP may not set their NAVs according to the duration field of the received packet. Instead, the low-latency STAs may access the wireless medium before the NAVs associated with the non-member STAs expire.
Abstract:
This disclosure describes systems, devices, apparatus, and methods, including computer programs encoded on storage media, for controlling a network with one or more access points (APs). A controller may be configured to schedule at least some resources of the one or more APs to improve network efficiency. The APs may measure and report a variety of information and statistics to the controller. The controller may determine one or more transmission parameters and one or more operations a given AP is permitted to perform during a respective time interval. The controller may communicate the one or more transmission parameters using an indication, such as a message. At least one AP associated with the controller may communicate with stations (STAs) using the one or more transmission parameters.
Abstract:
This disclosure provides methods, devices and systems for enhanced bandwidth puncturing. Some implementations more specifically relate to punctured channel indications that support channel puncturing over a range of bandwidths achievable in accordance with the Institute of Electrical and Electronics Engineers (IEEE) 802.11be amendment, and future generations, of the IEEE 802.11 standard. In some implementations, an access point (AP) may communicate static punctured channel information to each associated wireless station (STA) in its BSS. In some other implementations, a transmit opportunity (TXOP) holder may communicate dynamic punctured channel information to a TXOP responder with which it intends to communicate. Still further, in some implementations, the TXOP responder may communicate additional punctured channel information to the TXOP holder responsive to the dynamic punctured channel information.
Abstract:
This disclosure provides methods, devices and systems for generating enhanced sounding packets. Some implementations more specifically relate to sounding packet designs that support enhancements to wireless communication protocols associated with the Institute of Electrical and Electronics Engineers (IEEE) 802.11be amendment, and future generations, of the IEEE 802.11 standard. In some implementations, an enhanced null data packet announcement (NDPA) frame may be configurable to support multiple versions of the IEEE 802.11 standard. For example, the enhanced NDPA frame may be configured in accordance with a legacy or a non-legacy NDPA frame format. In some other implementations, the enhanced NDPA frame may include a subfield carrying information identifying a particular basic service set (BSS) which may be associated with one or more STA information fields. Still further, in some implementations, an Extremely High Throughput (EHT) PPDU may include signaling to indicate whether the EHT PPDU is formatted as a sounding NDP.
Abstract:
This disclosure provides methods, components, devices and systems for signaling mechanisms for multi-hop channel sounding for relay operation. Some aspects more specifically relate to frame addressing and transmission opportunity (TXOP) or service period (SP) sharing to facilitate a multi-hop channel sounding within a single TXOP or SP. An originating device may transmit a first frame indicating identifying information corresponding to multiple other wireless communication devices to initiate a multi-hop channel sounding involving the multiple other wireless communication devices. For example, the originating device may include, in the first frame, identifying information corresponding to a satellite access point (AP) and identifying information corresponding to an end device with which the originating device may communicate via the satellite AP. In accordance with the multi-hop channel sounding, the originating device may receive, collectively via one or more frames, channel information associated with each hop between the originating device and the end device.