摘要:
Dynamic time-spectrum block allocation for cognitive radio networks is described. In one implementation, without need for a central controller, peer wireless nodes collaboratively sense local utilization of a communication spectrum and collaboratively share white spaces for communication links between the nodes. Sharing local views of the spectrum utilization with each other allows the nodes to dynamically allocate non-overlapping time-frequency blocks to the communication links between the nodes for efficiently utilizing the white spaces. The blocks are sized to optimally pack the available white spaces. The nodes regularly readjust the bandwidth and other parameters of all reserved blocks in response to demand, so that packing of the blocks in available white spaces maintains a fair distribution of the overall bandwidth of the white spaces among active communication links, minimizes finishing time of all communications, reduces contention overhead among the nodes contending for the white spaces, and maintains non-overlapping blocks.
摘要:
Techniques for enhancing throughput capacity and/or bandwidth distribution fairness among APs in a wireless network are described. Specifically, a channel frequency profile which includes a center frequency and channel-width (i.e., channel bandwidth) is dynamically assigned to each of one or more APs in a wireless network. The assigned channel frequency profile for each AP is based, at least in part, on the current composition of the wireless network including, its topology and traffic load distribution. In this regard, each AP's channel frequency profile can be continuously or periodically changed such that the entire available frequency spectrum is effectively utilized and/or interference between APs is avoided or limited. This, in turn, enhances the throughput capacity and/or bandwidth distribution fairness of the wireless network.
摘要:
Techniques for implementing mutual-exclusion algorithms that are also fault-resistant are described herein. For instance, this document describes systems that implement fault-resistant, mutual-exclusion algorithms that at least prevent simultaneous access of a shared resource by multiple threads when (i) one of the multiple threads is in its critical section, and (ii) the other thread(s) are waiting in a loop to enter their respective critical sections. In some instances, these algorithms are fault-tolerant to prevent simultaneous access of the shared resource regardless of a state of the multiple threads executing on the system. In some instances, these algorithms may resist (e.g., tolerate entirely) transient memory faults (or “soft errors”).
摘要:
Techniques are described to mitigate ad stalking and other user concerns resulting from user-targeted advertising. A user may be informed of advertising information by a process in which an advertising server receives a request for an ad. The request may have been generated in response to a user request for a landing web page. An ad may be selected based on user information available to the advertising server, where the user information is associated with the user and describes behavior and/or attributes and/or preferences associated with the user. Text about how the ad was selected may be incorporated into the ad. Such text may describe the user information used to select the ad. The selection-disclosing text may be incorporated in the ad in a form that is displayable to the user by a browser. The ad may then be transmitted for display in the landing web page.
摘要:
Techniques for utilizing trusted hardware components for mitigating the effects of equivocation amongst participant computing devices of a distributed system are described herein. For instance, a distributed system employing a byzantine-fault-resilient protocol—that is, a protocol intended to mitigate (e.g., tolerate, detect, isolate, etc.) the effects of byzantine faults—may employ the techniques. To do so, the techniques may utilize a trusted hardware component comprising a non-decreasing counter and a key. This hardware component may be “trusted” in that the respective participant computing device cannot modify or observe the contents of the component in any manner other than according to the prescribed procedures, as described herein. Furthermore, the trusted hardware component may couple to the participant computing device in any suitable manner, such as via a universal serial bus (USB) connection or the like.
摘要:
Systems and methodologies for stall-time fair memory access scheduling for shared memory systems are provided herein. A stall-time fairness policy can be applied in accordance with various aspects described herein to schedule memory requests from threads sharing a memory system. To this end, a Stall-Time Fair Memory scheduler (STFM) algorithm can be utilized, wherein memory-related slowdown experienced by a group of threads due to interference from other threads is equalized. Additionally and/or alternatively, a traditional scheduling policy such as first-ready first-come-first-serve (FR-FCFS) can be utilized in combination with a cap on column-over-row reordering of memory requests, thereby reducing the amount of stall-time unfairness imposed by such traditional scheduling policies. Further, various aspects described herein can perform memory scheduling based on thread weights and/or other parameters, which can be configured in hardware and/or software.
摘要:
Techniques for implementing mutual-exclusion algorithms that are also fault-resistant are described herein. For instance, this document describes systems that implement fault-resistant, mutual-exclusion algorithms that at least prevent simultaneous access of a shared resource by multiple threads when (i) one of the multiple threads is in its critical section, and (ii) the other thread(s) are waiting in a loop to enter their respective critical sections. In some instances, these algorithms are fault-tolerant to prevent simultaneous access of the shared resource regardless of a state of the multiple threads executing on the system. In some instances, these algorithms may resist (e.g., tolerate entirely) transient memory faults (or “soft errors”).
摘要:
Providing for multi-tiered RAM control is provided herein. As an example, a RAM access management system can include multiple input controllers each having a request buffer and request scheduler. Furthermore, a request buffer associated with a controller can vary in size with respect to other buffers. Additionally, request schedulers can vary in complexity and can be optimized at least for a particular request buffer size. As a further example, a first controller can have a large memory buffer and simple scheduling algorithm optimized for scalability. A second controller can have a small memory buffer and a complex scheduler, optimized for efficiency and high RAM performance. Generally, RAM management systems described herein can increase memory system scalability for multi-core parallel processing devices while providing an efficient and high bandwidth RAM interface.
摘要:
As microprocessors incorporate more and more devices on a single chip, dedicated buses have given way to on-chip interconnection networks (“OCIN”). Routers in a bufferless OCIN as described herein rank and prioritize flits. Flits traverse a productive path towards their destination or undergo temporary deflection to other non-productive paths, without buffering. Eliminating the buffers of on-chip routers reduces power consumption and heat dissipation while freeing up chip surface area for other uses. Furthermore, bufferless design enables purely local flow control of data between devices in the on-chip network, reducing router complexity and enabling reductions in router latency. Router latency reductions are possible in the bufferless on-chip routing by using lookahead links to send data between on-chip routers contemporaneously with flit traversals.
摘要:
Systems and methods that coordinate operations among a plurality of memory controllers to make a decision for performing an action based in part on state information. A control component facilitates exchange of information among memory controllers, wherein exchanged state information of the memory controllers are further employed to perform computations that facilitate the decision making process.