Abstract:
The yaw rate sensor of the present invention has force-conveying means. The central idea of the invention is that the force action conveyed by this arrangement has a frequency such that the frequency of the conveyed force action is an integral multiple of the frequency of the oscillation of the drive element parallel to the X-axis.
Abstract:
A micromechanical motion sensor is capable of detecting a deflection imparted to an oscillatably mounted bar spring element excited to a permanent periodic oscillation by an electrostatic oscillating drive to which a periodic drive voltage is applied. To compensate non-linearities of the resonance frequency response of the bar spring element, a sum of a normal drive voltage signal and a compensation drive signal may be applied to a comb drive. In an alternative embodiment, separate compensation comb drive units may be additionally provided to the comb drive units used for the oscillation drive and a compensation voltage signal may be applied to them to compensate for the non-linearity.
Abstract:
A method and a system for detecting the spatial movement state of moving objects, e.g., vehicles. Due to a, for example, non-cartesian arrangement of four rotational rate sensors and/or acceleration sensors, it is also possible to obtain a redundant signal in addition to the desired useful signal indicating the spatial movement state, e.g., the rotational movement and/or acceleration in space; if this redundant signal is large enough in comparison with the rotational rate actually applied, it may be used for detection of the size of the error and the defective sensor. The four sensors are mounted, for example, on a sensor platform forming a three-sided truncated pyramid so that all possible three-way combinations of sensors are mutually linearly independent. The accuracy about the vertical axis is defined by the angle of inclination of the side faces of the truncated pyramid.
Abstract:
The invention relates to a device for generating bias voltages for the electrodes of a rotation rate sensor. By evaluating a rotation rate signal and a quadrature signal, control signals are generated, using an adaptive quadrature compensator, that are converted by means of a bias voltage generating arrangement into bias voltages that are delivered to the electrodes of an electrode arrangement disposed underneath the seismic mass or masses of the rotation rate sensor. As a result, the sensor structure can be inclined in such a way that the quadrature signal occurring at the output is minimized. In accordance with a further feature of the invention, the bias voltages generated by the bias voltage generating arrangement are modified, as a function of the output signal of a bandwidth adjusting circuit, in such a way that the amplitude frequency response of the detection motion has a desired bandwidth.