Abstract:
An integrated and self-contained suspension assembly having a gas spring integrated with a shock absorber (damper) is described. The rigid gas cylinder of the air spring is divided into a first gas chamber and a second gas chamber. A flow port connects the first and second gas chambers, and can be manually opened or closed by valve and a simple one-quarter turn rotation of an external knob to instantly switch the gas spring between two different spring rates. The different spring rates are functions of the separate or combined volumes of the two gas chambers. The integrated suspension assembly is compactly packaged and self-contained, i.e., does not require any externalities, such as gas sources or electricity, to operate.
Abstract:
A gas spring curve control valve for a adjustable-volume gas-pressurized device is described. The valve allows for selection from among at least four spring curves and can be packaged in small spaces/devices. In an exemplary embodiment of the invention, a rotary cam having grooves and lobes that interact with spring loaded ball bearings and an external adjuster knob are used to easily change the gas spring curve “on-the-fly” and with minimal user effort.
Abstract:
A dampener including a valve movable between an open position and a closed position to selectively alter the compression damping rate of the shock absorber. The valve may include a self-centering feature which operates to keep the valve body centered about the valve shaft. The dampener may also include a timer feature, which retains the valve in an open position for a predetermined period of time after it is initially opened.
Abstract:
A shock absorber comprises an adjustment component movable in two degrees of freedom. When the adjustment component is adjusted within one of its degrees of freedom of movement, a characteristic, such as the compression damping, is adjusted and when the adjustment component is adjusted within the other of its degrees of freedom of movement another characteristic, such as the rebound damping, is adjusted. The invention extends to a method of adjusting the operation of a shock absorber.
Abstract:
A one-story building having a polygonal floor with a centrally located mast, has exterior walls tilted up from horizontal by means of tackle mounted to the mast. The walls are of a cast cementitious material with embedded rectangular grid of bamboo tubes. Continuous strings of barbed wire extend lengthwise inside the horizontal tubes of the grid around the entire perimeter of the building from one jamb to the other of a doorway in one of the exterior walls to bind walls together. Selected ones of the horizontal and vertical tubes used for electrical and plumbing conduits. Tubes are filled with concrete after erection of the walls. The mast and tackle thereon are used to erect a multipanel roof to position where it is supported on the mast and walls.
Abstract:
A vehicle suspension damper for providing a variable damping rate. The vehicle suspension damper comprises a first damping mechanism having a variable first threshold pressure, a second damping mechanism having a second threshold pressure, and a compressible chamber in communication with a damping fluid chamber, wherein the second damping mechanism is responsive to a compression of said compressible chamber.
Abstract:
A gas spring capable of having long and short travel modes is described. The gas spring uses liquid in combination with pressurized air to affect the travel length. Unlike conventional gas springs, the gas spring according to the invention may have its travel reduced more than, for example, by 50%.
Abstract:
A modern suspension damper, for example, a shock absorber or a suspension fork, including an inertia valve and a pressure-relief feature is disclosed. The pressure-relief feature includes a rotatable adjustment knob that allows the pressure-relief threshold to be externally adjusted by the rider “on-the-fly” and without the use of tools.
Abstract:
A gas spring curve control valve for a adjustable-volume gas-pressurized device is described. The valve allows for selection from among at least four spring curves and can be packaged in small spaces/devices. In an exemplary embodiment of the invention, a rotary cam having grooves and lobes that interact with spring loaded ball bearings and an external adjuster knob are used to easily change the gas spring curve “on-the-fly” and with minimal user effort.
Abstract:
A gas spring capable of having long and short travel modes is described. The gas spring uses liquid in combination with pressurized air to affect the travel length. Unlike conventional gas springs, the gas spring according to the invention may have its travel reduced more than, for example, by 50%.