Abstract:
Systems and methods are described that facilitate the management of contact information, at least some of the contact information related to entities in a serverless, peer-to-peer system. A contact store may store information regarding which other entities of a plurality of other entities are authorized to monitor presence of a user entity. Presence of an entity may generally indicate the willingness and/or ability of the entity to communicate and/or collaborate with other entities, for example. The contact store may also store information regarding which other entities of the plurality of other entities the presence of which should be monitored by the system. A user entity may be able to add contacts to and/or delete contacts from the contact store, for example. The user entity may also be able to modify the contact store to modify which other entities are authorized to monitor presence of the user entity and/or which other entities the presence information of which should be monitored by the system, for example.
Abstract:
A security infrastructure and methods are presented that inhibit the ability of a malicious node from disrupting the normal operations of a peer-to-peer network. The methods of the invention allow both secure and insecure identities to be used by nodes by making them self-verifying. When necessary or opportunistic, ID ownership is validated by piggybacking the validation on existing messages. The probability of connecting initially to a malicious node is reduced by randomly selecting to which node to connect. Further, information from malicious nodes is identified and can be disregarded by maintaining information about prior communications that will require a future response. Denial of service attacks are inhibited by allowing the node to disregard requests when its resource utilization exceeds a predetermined limit. The ability for a malicious node to remove a valid node is reduced by requiring that revocation certificates be signed by the node to be removed.
Abstract:
A security infrastructure and methods are presented that inhibit the ability of a malicious node from disrupting the normal operations of a peer-to-peer network. The methods of the invention allow both secure and insecure identities to be used by nodes by making them self-verifying. When necessary or opportunistic, ID ownership is validated by piggybacking the validation on existing messages. The probability of connecting initially to a malicious node is reduced by randomly selecting to which node to connect. Further, information from malicious nodes is identified and can be disregarded by maintaining information about prior communications that will require a future response. Denial of service attacks are inhibited by allowing the node to disregard requests when its resource utilization exceeds a predetermined limit. The ability for a malicious node to remove a valid node is reduced by requiring that revocation certificates be signed by the node to be removed.
Abstract:
An authentication mechanism uses a trusted people store that can be populated on an individual basis by users of computing devices, and can comprise certificates of entities that the user wishes to allow to act as certification authorities. Consequently, peer-to-peer connections can be made even if neither device presents a certificate or certificate chain signed by a third-party certificate authority, so long as each device present a certificate or certificate chain signed by a device present in the trusted people store. Once authenticated, a remote user can access trusted resources on a host device by having local processes mimic the user and create an appropriate token by changing the user's password or password type to a hash of the user's certificate and then logging the user on. The token can be referenced in a standard manner to determine whether the remote user is authorized to access the trusted resource.
Abstract:
A security infrastructure and methods are presented that inhibit the ability of a malicious node from disrupting the normal operations of a peer-to-peer network. The methods of the invention allow both secure and insecure identities to be used by nodes by making them self-verifying. When necessary or opportunistic, ID ownership is validated by piggybacking the validation on existing messages. The probability of connecting initially to a malicious node is reduced by randomly selecting to which node to connect. Further, information from malicious nodes is identified and can be disregarded by maintaining information about prior communications that will require a future response. Denial of service attacks are inhibited by allowing the node to disregard requests when its resource utilization exceeds a predetermined limit. The ability for a malicious node to remove a valid node is reduced by requiring that revocation certificates be signed by the node to be removed.
Abstract:
A multi-tone synchronous collision resolution system permits communication nodes within a MANET to contend simultaneously for a plurality of available channels. The communication nodes contend for access using a synchronous signaling mechanism that utilizes multiple tones in a synchronous manner to resolve contentions. Contentions are arbitrated locally, and a surviving subset of communication nodes is selected. The communication nodes of the surviving subset then transmit data packets simultaneously across the available communication channels.
Abstract:
Disclosed is a system for organizing and storing information about multiple peer identities. New certificates are introduced that enable a user to efficiently create, modify, and delete identities and groups. New storage structures enable the user to list and search through existing identities, groups, and their related certificates. An identity certificate contains information about a peer identity. A group root certificate is created by a user when he decides to create a new group. When the group creator user wishes to invite another entity to join the group, it creates another type of certificate called a group membership certificate. The group membership certificate is logically “chained” to the group root certificate. The invitee checks the validity of these certificates by checking that the chaining has been properly done. The invitee may then be allowed to invite other entities to join the group by sending out its own group membership certificates.
Abstract:
A cash withdrawal system and method are provided. The system enables the withdrawal of cash associated with a withdrawal cash user at merchant locations.
Abstract:
An integrated circuit (IC) includes a first I/O cell, a logic cell, a trigger signal generation circuit, and a second I/O cell having a voltage selection pin. I/O interfaces of the first I/O cell receive first and second supply voltages, respectively, and I/O interfaces of the second I/O cell receive third and fourth supply voltages, respectively. The first I/O cell generates a first trigger signal when the first supply voltage reaches a first predetermined voltage. The logic cell receives the first trigger signal and generates a safe-state signal. The trigger signal generation circuit generates a second trigger signal when the third supply voltage reaches a second predetermined voltage. The voltage selection pin receives the safe-state signal and the second trigger signal and sets the second I/O cell in a safe-state mode, which protects the second I/O cell from over voltage damage.
Abstract:
A system for reducing dynamic power consumption of a wakeup source includes a receiver interface coupled to the wakeup source. A data packet, received by the receiver interface, transmits the data packet to the wakeup source. The wakeup source processes the data packet to identify a predetermined code for initiating a wakeup sequence. The wakeup source is put into a deep sleep mode if it is idle for a predetermined time period.