Method and Reactor for Oxidative Coupling of Methane

    公开(公告)号:US20210087121A1

    公开(公告)日:2021-03-25

    申请号:US16965370

    申请日:2019-05-02

    Abstract: A method of autothermal oxidative coupling of methane (OCM) utilizes introducing a methane-containing feedstock and an oxygen-gas-containing feedstock into a reactor (10) as a flowing mixture (18) with a space time of 500 ms or less. The reactor (10) contains a catalyst bed (20) of an OCM catalyst that contacts the flowing mixture and wherein the catalyst bed (20) has a heat Peclet number (Peh) of from 5 or less, a mass Peclet number (Pem) of from 5 or more, and a transverse Peclet number (P) of from 1 or less while contacting the flowing mixture. The methane and oxygen of the feedstocks are allowed to react within the reactor (10) to form methane oxidative coupling reaction products. A reactor (10) for carrying out the OCM reaction is also disclosed.

    Three-dimensional annular rotating fluidized bed fluid-solids contactor

    公开(公告)号:US12145144B2

    公开(公告)日:2024-11-19

    申请号:US17310585

    申请日:2020-02-13

    Abstract: A fluid-solids contactor comprising an annular rotating fluidized bed and a method of using the same are disclosed. The fluid-solids contactor includes a vessel and a plurality feed inlets disposed thereon. The vessel comprises a stationary inner wall, an outer wall, and a chamber formed between the stationary inner wall and the outer wall. The feed inlets are configured to create an annular rotating bed with mixture of solids and a fluid when the solid particles and a fluid are fed into the chamber. The stationary inner wall of the vessel is permeable to the fluid such that the fluid from the chamber can be continuously withdrawn from the solids to the space within the stationary inner wall of the vessel.

    OCM reactor system containing a multi component catalyst system

    公开(公告)号:US11969724B2

    公开(公告)日:2024-04-30

    申请号:US18038547

    申请日:2021-12-07

    Abstract: The invention relates to a reactor system for oxidative coupling of methane (OCM), comprising: reactor system for oxidative coupling of methane (OCM), comprising: (a) an inlet configured to receive a reactant mixture; (b) a reaction chamber having an upstream end and a downstream end such that the reaction chamber extends from the upstream end to the downstream end, and the reaction chamber comprises a catalyst bed having a catalyst composition having at least two catalyst components: (i) a low selectivity catalyst component; and (ii) a high selectivity catalyst component; and (c) an outlet configured to recover a C2+ hydrocarbon product mixture from the reactor system; wherein the reactor system is configured such that the reactant mixture substantially contacts the high selectivity catalyst component prior to contacting the low selectivity catalyst component. The invention further describes a process for the production of C2+ hydrocarbon product mixture using the present reactor system.

    MULTILAYER MIXED OXIDE SUPPORTED CATALYST FOR OXIDATIVE COUPLING OF METHANE

    公开(公告)号:US20220387973A1

    公开(公告)日:2022-12-08

    申请号:US17769879

    申请日:2020-09-21

    Abstract: A multilayer supported oxidative coupling of methane (OCM) catalyst composition (support, first single oxide layer, one or more mixed oxide layers, optional second single oxide layer) characterized by formula AaZbEcDdOx/support; A is alkaline earth metal; Z is first rare earth element; E is second rare earth element; D is redox agent/third rare earth element; the first, second, third rare earth element are not the same; a=1.0; b=0.1-10.0; c=0.1-10.0; d=0-10.0; x balances oxidation states; first single oxide layer (Zb1Ox1, b1=0.1-10.0; x1 balances oxidation states) contacts support and one or more mixed oxide layers; one or more mixed oxide layers (Aa2Zb2Ec2Dd2Ox2, a2=1.0; b2=0.1-10.0; c2=0.1-10.0; d2=0-10.0; x2 balances oxidation states; AaZbEcDdOx and Aa2Zb2Ec2Dd2Ox2 are different) contacts first single oxide layer and optionally second single oxide layer, and second single oxide layer (AO), when present, contacts one or more mixed oxide layers and optionally first single oxide layer.

    Mixed oxides catalysts for oxidative coupling of methane

    公开(公告)号:US11458458B2

    公开(公告)日:2022-10-04

    申请号:US16495554

    申请日:2018-03-21

    Abstract: An OCM catalyst composition characterized by general formula AaLabEcDdOx; wherein A is an alkaline earth metal; wherein E is a first rare earth element; wherein D is a redox agent or a second rare earth element; wherein the first rare earth element and second rare earth element are different; wherein a is 1.0; wherein b is 0.01-10.0; wherein c is 0-10.0; wherein d is 0-10.0; and wherein x balances the oxidation states. The alkaline earth metal is selected from the group consisting of Mg, Ca, Sr, Ba, and combinations thereof. The first rare earth element and the second rare earth element can each independently be selected from the group consisting of Sc, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Y, Tb, Dy, Ho, Er, Tm, Yb, Lu, and combinations thereof. The redox agent is selected from the group consisting of Mn, W, Bi, Sb, Sn, Ce, Pr, and combinations thereof.

    Process for oxidative conversion of methane to ethylene

    公开(公告)号:US11148985B2

    公开(公告)日:2021-10-19

    申请号:US16481790

    申请日:2018-01-29

    Abstract: A process for producing ethylene and syngas comprising reacting, via OCM, first reactant mixture (CH4&O2) in first reaction zone comprising OCM catalyst to produce first product mixture comprising ethylene, ethane, hydrogen, CO2, CO, and unreacted methane; introducing second reactant mixture comprising first product mixture to second reaction zone excluding catalyst to produce second product mixture comprising ethylene, ethane, hydrogen, CO, CO2, and unreacted methane, wherein a common reactor comprises both the first and second reaction zones, wherein ethane of second reactant mixture undergoes cracking to ethylene, wherein CO2 of second reactant mixture undergoes hydrogenation to CO, and wherein an amount of ethylene in the second product mixture is greater than in the first product mixture; recovering methane stream, ethane stream, CO2 stream, ethylene stream, and syngas stream (CO&H2) from the second product mixture; and recycling the ethane stream and the carbon dioxide stream to second reaction zone.

Patent Agency Ranking