Abstract:
Provided is a light modulator including a substrate, and a resonator configured to modulate a phase of incident light by modulating a refractive index based on an external stimulus, the resonator comprising a first reflective structure provided on the substrate, a cavity layer provided on the first reflective structure, and a second reflective structure provided on the cavity layer, wherein at least one of the first reflective structure or the second reflective structure comprises first material layers, second material layers that are alternately stacked with the first material layers, and a third material layer, and wherein each of the first material layers has a first refractive index, each of the second material layers has a second refractive index that is different from the first refractive index, and the third material layer has a third refractive index that is different from the first refractive index
Abstract:
A light modulator for amplifying an intensity of incident light and modulating a phase of the incident light is provided. The light modulator includes: a first distributed Bragg reflector (DBR) layer having a first reflectivity and comprising at least two first refractive index layers that have different refractive indices from each other and are repeatedly alternately stacked; a second DBR layer having a second reflectivity and comprising at least two second refractive index layers that have different refractive indices from each other and are repeatedly alternately stacked; and an active layer disposed between the first DBR layer and the second DBR layer, and comprising a quantum well structure.
Abstract:
Provided is an optical modulator including a plurality of unit cells, an active layer including a plurality of refractive index changing areas that are separated from each other, each of the plurality of refractive index changing areas having a refractive index that changes based on an electrical signal applied thereto, a plurality of antenna patterns provided over the active layer, and a mirror layer provided under the active layer opposite to the plurality of antenna patterns.
Abstract:
A phase modulation active device and a method of driving the same are provided. The method may include configuring, for the phase modulation active device including a plurality of channels that modulate a phase of incident light, a phase profile indicating a phase modulation target value to be implemented by the phase modulation active device; setting a phase limit value of the phase modulation active device; generating a modified phase profile based on the phase profile by modifying the phase modulation target value, for at least one channel from the plurality of channels that meets or exceeds the phase limit value, to a modified phase modulation target value that is less than the phase limit value in the phase profile; and operating the phase modulation active device based on the modified phase profile. Thus, improved optical modulation performance may be achieved.
Abstract:
An optical neural network apparatus that optically implements an artificial neural network includes an input layer, a hidden layer, and an output layer sequentially arranged in a traveling direction of light, wherein the output layer includes an image sensor including a plurality of light sensing pixels arranged in two dimensions, and wherein the input layer or the hidden layer includes at least one passive phase modulator configured to locally modulate a phase of incident light depending on positions on a two dimensional plane.
Abstract:
An optical modulating device, a beam steering device, and a system employing the same are provided. The optical modulating device includes an active layer, a driver configured to electrically control a refraction index of the active layer, and a nano-antenna disposed on the active layer, and having a dual nano-antenna structure including a first nano-antenna and a second nano-antenna, the first nano-antenna having a length different from a length of the second nano-antenna, and the first nano-antenna being spaced apart from the second nano-antenna. The driver includes a first driver electrically connected to the first nano-antenna, and a second driver electrically connected to the second nano-antenna.
Abstract:
A beam steering apparatus includes a transformation layer, of which a refraction index is changed by light irradiation, a pattern layer arranged on the transformation layer and comprises a plurality of patterns, and a light irradiation unit arranged under the transformation layer. The pattern layer has patterns of a metasurface shape to reflect an external laser. The light irradiation unit may emit light having different characteristics.
Abstract:
MQW devices, IC chips and methods may be used in semiconductor lithography patterning systems. An MQW device includes an array of pixels that have transmission elements and associated support circuits. The support circuits have preliminary memory cells and final memory cells. The final memory cells store transmittance values that control transmittances of the associated transmission elements. This way, exposure of a target with a lithography system for purposes of patterning the target may be performed through the transmission elements according to the controlled transmittances, while subsequent transmittance values are being received by the preliminary memory cells from memory banks. The exposure of the target therefore needs to pause for less time, in order to wait for the MQW device to be refreshed with the subsequent transmittance values. Accordingly the whole semiconductor lithography patterning system may operate faster and thus have more throughput.
Abstract:
A method of manufacturing an organic-inorganic composite thin film may include: forming a thin film from a paste that includes an inorganic powder and an organic compound binder by using a screen printing process; and/or performing a pressing process and a heating process with respect to the thin film. The heating process may be performed at a glass transition temperature of the organic compound binder or in a temperature range higher than the glass transition temperature of the organic compound binder. An X-ray detector configured to detect X-rays irradiated from an outside of the X-ray detector may include: a photoconductive material layer in which electron-hole pairs are formed due to absorption of the X-rays. The photoconductive material layer may be formed of an organic-inorganic composite thin film that includes an inorganic powder and an organic compound binder.
Abstract:
Disclosed is a light modulating apparatus. The light modulating apparatus includes a pixel array including a plurality of pixels, a light modulating device that absorbs or transmit light incident on the pixel array according to an applied voltage, a flip-flop circuit that outputs a first voltage based on a device driving signal indicating a level of a second voltage applied to be applied to the light modulating device, and an amplifier that amplifies the first voltage to generate the second voltage and applies the second voltage to the light modulating device.