Abstract:
In an embodiment, a control circuit includes: an output terminal configured to be coupled to a control terminal of a transistor that is coupled to an inductor; a logic circuit configured to control the transistor using a first signal; a zero crossing detection circuit configured to generate a freewheeling signal indicative of a demagnetization of the inductor; a comparator having first and second inputs configured to receive a sense voltage indicative of a current flowing through the transistor and a reference voltage, respectively, and an output configured to cause the logic circuit to dessert the first signal; and a reference generator configured to generate the reference voltage and including: a current generator, a capacitor and a resistor coupled to the output of the reference generator, and a switch coupled in series with the resistor and configured to be controlled based on the first signal and the freewheeling signal.
Abstract:
A control unit for a switching converter has an inductor element coupled to an input and a switch element coupled to the inductor element and generates a command signal having a switching period to switch the switch element and determine a first time period in which an inductor current is flowing in the inductor element for storing energy and a second time period in which energy is transferred to a load. An input current is distorted relative to a sinusoid by a distortion factor caused by current ripple on the inductor current. The duration of the first time period is determined based on a comparison between a peak value of the inductor current and a current reference that is a function of an output voltage of said voltage converter. A reference modification stage modifies one of the current reference and sensed value of the inductor current to compensate for distortion introduced by the distortion factor on the input current.
Abstract:
A control module controls a switching converter including at least one inductor element and one switching element. The module includes: a driver circuit that generates a control signal which controls the on and off cycles of the switching element; a first modulation circuit which sends a command to the driver circuit in such a manner as to generate edges of a first type of the control signal, as a function of the input electrical quantity and of a reference electrical quantity; and a second modulation circuit which sends a command to the driver circuit in such a manner as to generate edges of a second type of the control signal, as a function of a first and a second internal electrical quantity, which are functions respectively of the charges on a first and a second capacitor, which are charged and discharged as a function of the control signal.
Abstract:
The present disclosure is directed to a primary-controlled high power factor quasi resonant converter. The converter converts an AC power line input to a DC output to power a load, generally a string of LEDs, and may be compatible with phase-cut dimmers. The power input is fed into a transformer being controlled by a power switch. The power switch is driven by a controller having a shaping circuit. The shaping circuit uses a current generator, switched resistor and capacitor to produce a reference voltage signal. The controller drives the power switch based on the voltage reference signal, resulting in a sinusoidal input current in a primary winding of the transformer, resulting in high power factor and low total harmonic distortion for the converter.
Abstract:
A method controls a power switch and senses a primary current through a transformer primary winding coupled to the power switch and deactivates the switch responsive to the sensed primary current reaching a current sensed reference. A demagnetization mode is initiated responsive to deactivating the power switch. During this mode a first capacitance is charged with a first charging current to generate the current sensed reference. The first charging current is based on a bias signal. A second capacitance is charged with a second charging current to generate the bias signal. The second charging current is based on a compensation signal. A third charging current generates a comparison signal, the third charging current based on the current sensed reference. The compensation signal is based on a difference between the comparison signal and an internal reference and the power switch activated based on a secondary current in a secondary transformer winding.
Abstract:
The present disclosure is directed to a high power factor quasi resonant converter. The converter converts an AC power line input to a DC output to power a load, generally a string of LEDs. The power input is fed into a transformer being controlled by a power switch. The power switch is driven by a controller having a shaping circuit. The shaping circuit uses a current generator, switched resistor and capacitor to produce a sinusoidal reference voltage signal. The controller drives the power switch based on the voltage reference signal, resulting in a sinusoidal input current in a primary winding of the transformer, resulting in high power factor and low total harmonic distortion for the converter.
Abstract:
The present disclosure is directed to a high power factor quasi resonant converter. The converter converts an AC power line input to a DC output to power a load, generally a string of LEDs. The power input is fed into a transformer being controlled by a power switch. The power switch is driven by a controller having a shaping circuit. The shaping circuit uses a current generator, switched resistor and capacitor to produce a sinusoidal reference voltage signal. The controller drives the power switch based on the voltage reference signal, resulting in a sinusoidal input current in a primary winding of the transformer, resulting in high power factor and low total harmonic distortion for the converter.
Abstract:
A control device for controlling a switching converter includes a switch controller that generates a control signal with a switching period for controlling switching of a switch of the switching converter and setting a first interval in which a current flows in the switch, a second interval in which energy is transferred onto a storage element of the switching converter, and a third, wait, interval, at the end of the second interval. The duration of the first interval is determined based on a control voltage indicating the output voltage. A pre-distortion stage receives the control voltage and generates a pre-distorted control voltage as a function of the control voltage and a relationship between one of the first and third time intervals and the switching period, wherein the switch controller is configured to control a duration of the first interval based on the pre-distorted control voltage.
Abstract:
The present disclosure is directed to a high power factor quasi resonant converter. The converter converts an AC power line input to a DC output to power a load, generally a string of LEDs. The power input is fed into a transformer being controlled by a power switch. The power switch is driven by a controller having a shaping circuit. The shaping circuit uses a current generator, switched resistor and capacitor to produce a sinusoidal reference voltage signal. The controller drives the power switch based on the voltage reference signal, resulting in a sinusoidal input current in a primary winding of the transformer, resulting in high power factor and low total harmonic distortion for the converter.
Abstract:
The present disclosure is directed to a high power factor quasi resonant converter. The converter converts an AC power line input to a DC output to power a load, generally a string of LEDs. The power input is fed into a transformer being controlled by a power switch. The power switch is driven by a controller having a shaping circuit. The shaping circuit uses a current generator, switched resistor and capacitor to produce a sinusoidal reference voltage signal. The controller drives the power switch based on the voltage reference signal, resulting in a sinusoidal input current in a primary winding of the transformer, resulting in high power factor and low total harmonic distortion for the converter.